Apache Derby }

Derby Reference Manual

Version 10.14

Derby Document build:
April 6, 2018, 6:14:16 PM (PDT)

Version 10.14 Derby Reference Manual

Contents

1670] o)A 1[0 1| ST PP PR PP PRR 11
[T =T 1= N 12
ADOUL IS QUITE. ..t e e e e e anes 16
Purpose of thisS dOCUMENT. ..ot 16
F 2N U0 =] oY1 = TR 16
How this guide iS Organized............covvviiiiiiiiiiiee e 16
SQL syntax used in this Manual........cccccceeiiiiiiie e 17
SQL 1aNQUAGE FEFEIENCE. ...ciii it et 18
Capitalization and special CharacCters........ccoouueiiiiiiiiiie e 18
Y@]I T 1= o) =T PSSR 18
Rules for SQL identifiers...........uueeiiiiiiiee e 19

Y@] o 1= 0 11T RS 19
AGIrEgAtENAUMIE. ...t 20

Fo U1 gTo] g Vi o] a1 o [T 0] (1] RN 20
(o701 o111\ =1 ¢ 1S 20

(o70] 0 15] [tz 110 1)\ F= T = 21

(7o] (=1 F= N1 (0] g1 N =11 1T 21

Lol U Y0 NN F=T 1 1= TR PPN 21

L{8 Lo 00T 0] A\ F= T o1 22

100 =3 N F= T L= P 22
NEWTADIENGIME. ... oottt e e e e e et e e e e e e eabaneeeseees 22
PrOCEAUNENAIMIE. ...ttt e e et e e e e e ebre e e e e nanbeas 23
(0111 A\ F= T = 23

LYo aT=T g F= 1AV F= L T 23
SEOUENCENGBIME. ...ttt e nenennennne 24
SIMPIECOIUMNNAME. ...ttt e e 24
SYNONYMNGIMIE. ... e e e e e e e e e e 24

12 101 (ST AN F= Ty L N 24

Lo [0 [T 4NN F= 10 =TSR PRI 25
TYPENGME. ... e 25
(VTSN =T [T 25

] = 10T 0 4 1=T 0] £ 26
Interaction with the dependency SYStEM.........ccoviiiiiiiiiiiie e 26
ALTER TABLE Statement......... oo 27
CALL (PROCEDURE) StatemMeNt.........cuuviieiiiiiiie ettt 32
CREATE StAlEMENTS. ...u ettt e e e e e 33
DECLARE GLOBAL TEMPORARY TABLE statement........cccccceeeeeiiiiiiineeenennn.. 57
DELETE StAtemMeNt. ... et e e e aaaas 60

(D] @) =1 (=] 1 1= 0] ST 60
GRANT StAIEMENT.ot e e e e e 64

I] = = IS r= 1 (=10 4 [o] SR 67
LOCK TABLE Stat@mMENT.......ccveeeiii et e e 69
MERGE STAt@MENToieeeiii e e 70
RENAME StatEMENLS......ovniiiiiiiei et et e e et e et e e e e ebeees 73
REVOKE SEAIEMENT ...t e e e e e e e e 74

] = O Y =1 (=1 1= o | TR 78

] = Y r= 1 (=] .41] £ RPN 80
TRUNCATE TABLE Stat€mMeNt........ouo e 84
UPDATE StatemMENt.t e e e e e e eans 84
Y@ o3 =TS = R 85

Version 10.14 Derby Reference Manual

CONSTRAINT CIAUSE....ceeeiitiiiee ittt e et e e e s b e e e enes 85
EXTERNAL NAME ClAUSE.......cciiiiiiiiiiiiee ettt 93
FOR UPDATE CIAUSE.....ciiiiiiiiiiee ittt ettt e et e et e e e e s nnbaeeeeean 94
FROM ClAUSE.....cciitiiiie ettt ettt e st e e s et e e e e e neneas 95
GROUP BY ClAUSE.eiiiiiiiiiiie ettt ettt e e e sbbee e e nees 95
HAVING CIAUSE.....ciiiiiiiiiee ettt e e et e e e st e e e e s nsbaeeaeeans 96
WINDOW ClAUSE......ctiiieeiiitiiie ettt ettt et e e e e et e e e e anbee e e e e nneees 97
ORDER BY ClAUSE.....ccuiiiiiie ittt eee e s enaaeee s 97
The result offset and fetch first ClauSes.........ccvveeviiii i, 99
USING ClIAUSE. ...eeiiiiiiiiiee ettt ettt e e et e e e s st e e e s snbaeeeeeans 100
WHERE ClAUSE........cviiiiiiiiiiie ettt e e e e et e e et e e e e 100
WHERE CURRENT OF ClIaUSE.....cceiiiiiiiieiiiiiiiee e 101
Y@ I =) q o] €= ST= o o = PP 102
SEIECTEXPIESSION. .. eeeeiiiiieee e e e i ittt e e e e e e e e s e e e e e e e e s s e ae e rbaaeereeaaeeeeaaananns 105
1220 [T b o] £ (o o PSP 107
NEXT VALUE FOR EXPreSSION....cccciiiiiiiitiieiie e e e et e e e e e e e e e s 108
VALUES EXPIrESSION.uuuiiiiiiiiiieieeeeesiiiiiittteeeeeeeeaeasssassastasrssseeeaeaesessnansnnsssneees 109
EXPresSsion PreCERABNCE.uuuiiiiiie et a e e e e e e rraree s 111
BOO0ICAN EXPIrESSIONS. ...ciiiiiiie e e e e e e aa e e e e 111
CASE ©XPIESSION...cciiiiiee it i i ittt et e e e e e e s e s sttt eeeaaeeeeessasastrabaereaaaaaesassnnnnnes 113
DYNAMIC PArAMELEIS. .. . ueeiiiiiiieeieee e e e e e e e e e e e e e s e e s e e e e e e e e e s aeannanenreees 115
N @ Ao oY=T =1 410 o 1= SR 118
INNER JOIN OPEIatiON........cuuiiiiiiiiieeeeeeie s ettt e e e e e e e e e s et ae e e e e e e e e e e e s snnnnnenees 118
LEFT OUTER JOIN OPEratiON.........cuvuiiiiiiieeeeeeiiiiiiiiiiiieeer e e e e e e s sessnvnnneeeeeeaeaeaens 119
RIGHT OUTER JOIN OPEratioN........ccuvviiiiiieiieeeeeesicciiintee e e e ee e e e e e sssannvsnneneeeeas 120
CROSS JOIN OPEIratiON......cccciieiiiiiiiiie et e e et e e e e e e e e e s s e e e e aaeee e e s 121
NATURAL JOIN OPEIatiON.....uvieiiiieeeeeeiii ittt eee e e e e e s e s seinvaee e e e e e e e e e s e s saneaneeees 122
Y@ o T L= = USSR 123
L0 [1] PP PRTTR 123
SCAIAISUDQUETY ... e e e e e 125
(2= 0] (SIS 0] o Lo [=T o PPPRRURR 125
BUIE-IN FUNCHIONS .ot 126
Standard built-in FUNCHONS..........cooiiiiiii e 126
Aggregates (Set fUNCHONS).......iiiiieiiii e 127
ABS 0 ABSVAL fUNCLION.......iiiiiiiiiiie et 129
F 01 @ 1T (¥ o 1o o PRSP 129
ASIN FUNCHON. ...ttt e e s e e e s snaneeas 129
ATAN FUNCHION. ..ttt e e st e e e st e e e s sbbeeeeeen 130
ATANZ FUNCHON.et ittt et et e e et e e e s sbaeeeeeaae 130
F Y C I (1] o1 1o] o PP PRP PR 130
BIGINT fUNCLON. ...ttt e e e e 131
CAST FUNCHON. ...ttt st e e e ennbee e e e e nneees 131
CEIL or CEILING fUNCLON......iiiiiiiiiiie et saeee e 135
CHAR fUNCHON. ...ttt e eneaeee s 136
COALESCE fUNCHON.....ctiiiie ittt et nbaee e e e 137
ConcatenNation OPEIALON..........c..uiiiiiiiieeee e e e e et e e e e e e e s e s r e e e e e e e e e seannes 138
(1@ ST (1] od 1o] o PRSPPI 139
610 151 o I (1] 3T 1o o PRSP 139
(10 I (V1 0o 1o o RO 139
COUNT FUNCHON. ...ttt ettt e e st e e e s st e e e e snsbaeeeeeans 139
COUNT(®) fUNCHON......cci it e e e e e e e s e e snaenees 140
CURRENT DATE fUNCLON....cciiiiiiiiie ettt 140
CURRENT_DATE fUNCHON....cciiiiitiiiiie ettt e et e e s ee e 140
CURRENT ISOLATION fUNCHON.ciiiiiei it 141
CURRENT_ROLE fUNCHON. ...ttt 141
CURRENT SCHEMA fUNCHON. ...ttt 141

Version 10.14 Derby Reference Manual

CURRENT TIME fUNCHON.....coitiiiiiiitiiece ettt 141
CURRENT _TIME fUNCHON.....ciiiiiii it 141
CURRENT TIMESTAMP fUNCHON......uuttitiiiiieieieieeeeeeeeeeeeeeeeeeeeevev e 142
CURRENT_TIMESTAMP fUNCHON.......cctiiiiiiiiie e 142
CURRENT _USER fUNCHON......ciiiiiiiieeii e 142
(BN I R (V] ox 1 o] o PR 143
(DY N (V] o Tox 1o o PR PPRPRPRRURUORRPPPN 143
DEGREES TUNCHION......ciiiiiiiiieieteceee et e e 144
DOUBLE fUNCLON......ciiiiiiiiiiieieeeeeeee et e e e e e e e e e e e e e e e 144
EXP fUNCLION.......cooiiiiiiieeeee ettt a e e e e e e e e e e e 144
FLOOR fUNCHON. 111ttt e e e e s e e e e e e e e e aeaeeeeeeeseeessssenes 145
[(@181 0 (¥ 3 (ox 1 o] o FRURE R 145
IDENTITY_VAL_LOCAL fUNCHON......utuiiiiiiiiie e e e 145
INTEGER TUNCHION.......ciiiiieieeeeeeet et e et 147
LCASE 0or LOWER fUNCLION.........ccoiiiiiiiieieeeeetieee et e e e ee e eeeaevananns 148
(I N L I I 0 (o2 1o o P 148
LN OF LOG fUNCHON. .. .ciiiiiiiiiiieeeeeceeeeeeeeeeee e e e e e e e e e e e e e e e e eeeeeesaeraraaes 149
(@I (O (V13 ox 1 o] o PRURRR R 149
LOCATE fUNCHON. 111ttt ie ettt e s e s e e e e e e e aeaeeeeeeeeeseesssenes 149
LTRIM fUNCHON.....ciiiiiiiiieceeceeeeeeeee e e e e e e e e e 150
MAX FUNCHION. ..ottt e e e e e e e e e e e e e e e as 150
Y LI (0T ox 1 o] o P 151
MINUTE fUNCLION.....coiiiiiiiieieceieeeeeeeee bbb s 152
Y (@0 (] aTox i [0 o FH PR PRUPTPRRRPRORRPPPIN 152
MONTH FUNCHION.......cooiiiiiiieeeee ettt s e e e e e e e 152
NULLIF fUNCHON. 111ttt e s s e s e e e e e e e e e e eaeeeeeeeeeeeesarenes 153
[I 10 0 Tox 1o o TP UUPOUUPRPRRRRR 153
RADIANS fUNCHON....cettitiiiteeee ettt e e e e e e e e aaeee s 153
RANDOM fUNCHON....cettiiiiitecee ettt ettt e e e e e e e e e e e aeeees 154
RAND FUNCLION.......coiiiiiiiiieieee ettt ettt e e e e e e e e eeeans 154
ROW_NUMBER fUNCHON........uiiiiiiiiiiiiee et r e e e e e e e e 154
RTRIM fUNCHON. 1.1ttt e s e e e e e e e e e e eeeeeeeeeeeeeasereees 155
SECOND fUNCLION.......cciiiiiieiiieeeeeeeeeee et e e e e e e e e e e e e e e e e e e bbb 155
SESSION_USER fUNCHON.......uuiiiiiiiiieiee et e e e e e e e e e seannes 155
SIGN FUNCHION. ..ot e e e e e e e e e as 156
] AV {0 T 1o TS UUPP U 156
SINH fUNCHON. ..ttt s e s e e e e e e e e e aeeeeeeeeeeseessnnes 156
SMALLINT fUNCHON. ..ttt s e e e e e e e e e aeaeaeeeeeeeaees 156
Y@] 38 I {1 2o 1o T o P PRRPRR 157
SUBSTR fUNCHON. .. .ettetiiicieeee ettt e s e s e e e e e e e eeaeaeeeeseeeeanes 157
STDDEV_POP fUNCHON......uutiiiiiiie et e e e e e e 158
STDDEV_SAMP fUNCHON.......ciiiiiii i e e e e 159
S0 Y {9 T 1o] o RS UPOPSU PR 159
TAN fUNCHON. ..cettttitetcceee ettt e e s et e e e e e e e e eaeaeesseeeeessssssenes 160
I AN\ R (0] e 1o o PR 160
TIME fUNCHON. ...t e e e e e e e e e e e e e e e 160
TIMESTAMP fUNCLON.......cooiiiiiiieieeeee et e e s 161
IR 1LY/ 0T o3 (o] o PR 161
UCASE 0r UPPER fUNCHON.....coviiiitititcice ettt 162
USER fUNCHON....cetitiiittitceee ettt ettt ettt s e s e e e e e e e e e aeaeaeeeeeeenees 163
VAR _POP fUNCHON. ...ttt e e e e e e e s 163
VAR _SAMP fUNCHON.....cuuiiiiiiiie e e e e e eee e s 164
VARCHAR TUNCHON........ooiiiiiiiieeeeee et e e e e e e e e e e e e 164
XMLEXISTS OPEIALON ...ttt ettt e e e e e e e aab s 165
D AN] =i o] o 1] = 1o 166
XMLQUERY OPBIALON . ..ttt ettt e e et e e e eaba s 167

Version 10.14 Derby Reference Manual

XMLSERIALIZE OPEIALOr. .. .ciieeiiiieeeeeeiiie ettt ee s 169
= AN S B (1] X 1o o PRSP 170
BUIlt-in SYStEM fUNCHIONS....uiiiiiiiec e 170
SYSCS_UTIL.SYSCS_CHECK_TABLE system function............cccccoeevvvvveeeenns 170
SYSCS_UTIL.SYSCS_GET_DATABASE_NAME system function................... 171
SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY system function......... 171
SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS system function............. 171
SYSCS_UTIL.SYSCS_GET_USER_ACCESS system function....................... 172
SYSCS_UTIL.SYSCS_GET_XPLAIN_MODE system function......................... 172
SYSCS_UTIL.SYSCS_GET_XPLAIN_SCHEMA system function.................... 173
SYSCS_UTIL.SYSCS_PEEK_AT_IDENTITY system function......................... 173
SYSCS_UTIL.SYSCS_PEEK_AT_SEQUENCE system function..................... 174
BUIlt-iN SYSTtEM PrOCEAUIES.....uviiiiiiee ettt e e 175
SYSCS_UTIL.SYSCS_BACKUP_DATABASE system procedure.................... 175
SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE
L1 (=1 0 o (0 Lo =T [PP 175
SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE_NOWAIT
L1 (=1 0 o (0 Lo =T [PP 176
SYSCS_UTIL.SYSCS_BACKUP_DATABASE_NOWAIT system procedure....177
SYSCS_UTIL.SYSCS_CHECKPOINT_DATABASE system procedure........... 178
SYSCS _UTIL.SYSCS COMPRESS_TABLE system procedure...................... 178
SYSCS _UTIL.SYSCS CREATE_USER system procedure..........cccceeeveiiinnns 180
SYSCS_UTIL.SYSCS_DISABLE_LOG_ARCHIVE_MODE system
[T foTo7=To L1] (- EERPP 181
SYSCS _UTIL.SYSCS DROP_STATISTICS system procedure....................... 182
SYSCS _UTIL.SYSCS DROP_USER system procedure..............coeeevvvvvveennnnn. 182
SYSCS_UTIL.SYSCS_EMPTY_STATEMENT_CACHE system procedure..... 183
SYSCS _UTIL.SYSCS EXPORT_QUERY system procedure...............ceceuuvnine 184
SYSCS_UTIL.SYSCS_EXPORT_QUERY_LOBS_TO_EXTFILE system
[T foTo7=To L1] (- EERPP 185
SYSCS _UTIL.SYSCS EXPORT_TABLE system procedure.............c..coeeeuunns 186
SYSCS_UTIL.SYSCS_EXPORT_TABLE_LOBS_TO_EXTFILE system
[T foTo7=To L1] (- EERPP 188
SYSCS_UTIL.SYSCS_FREEZE_DATABASE system procedure..................... 189
SYSCS _UTIL.SYSCS IMPORT_DATA system procedure.........cccccveeeeeeriiennns 190
SYSCS_UTIL.SYSCS_IMPORT_DATA_BULK system procedure................... 191
SYSCS_UTIL.SYSCS_IMPORT_DATA_LOBS_FROM_EXTFILE system
[T foTo7=To L1] (- EERPP 194
SYSCS_UTIL.SYSCS IMPORT_TABLE system procedure.............cccceeeeeennnnn. 196
SYSCS_UTIL.SYSCS_IMPORT_TABLE_BULK system procedure................. 197
SYSCS_UTIL.SYSCS_IMPORT_TABLE_LOBS_FROM_EXTFILE system
[T foTo7=To L1] (- EERPP 199

SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE system procedure.....201
SYSCS_UTIL.SYSCS_INVALIDATE_STORED_STATEMENTS system

[T foTo7=To L1] (- EERPP 202
SYSCS _UTIL.SYSCS MODIFY_PASSWORD system procedure................... 203
SYSCS _UTIL.SYSCS REGISTER_TOOL system procedure................cc........ 204
SYSCS_UTIL.SYSCS_RELOAD_SECURITY_POLICY system procedure...... 205
SYSCS _UTIL.SYSCS RESET _PASSWORD system procedure..................... 205
SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY system procedure...... 206
SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS system procedure.......... 207
SYSCS_UTIL.SYSCS_SET_STATISTICS_TIMING system procedure............ 208
SYSCS _UTIL.SYSCS SET_USER_ACCESS system procedure.................... 208
SYSCS_UTIL.SYSCS _SET_XPLAIN_MODE system procedure...................... 209
SYSCS_UTIL.SYSCS_SET_XPLAIN_SCHEMA system procedure................. 209
SYSCS_UTIL.SYSCS_UNFREEZE_DATABASE system procedure................ 210

iv

Version 10.14 Derby Reference Manual

SYSCS_UTIL.SYSCS_UPDATE_STATISTICS system procedure................... 211
System procedures for storing jar files in a database..........ccccccceeeeviiiiiiiiiinnnn, 211
SYSCS_DIAG diagnostic tables and functions............ccccoviiiieeeeee e, 214
SYSCS _DIAG.CONTAINED_ROLES diagnostic table function........................ 214
SYSCS DIAG.ERROR_LOG_READER diagnostic table function.................... 215
SYSCS_DIAG.ERROR_MESSAGES diagnostic table...........ccccoocvveeiiiiiieeenns 216
SYSCS _DIAG.LOCK_TABLE diagnostic table............cccoeeiiiiiiieiieeee e, 217
SYSCS_DIAG.SPACE_TABLE diagnostic table function...................ccccuvniee. 218
SYSCS_DIAG.STATEMENT_CACHE diagnostic table...........ccccccoveiieeennnnnen. 220
SYSCS _DIAG.STATEMENT_DURATION diagnostic table function................. 221
SYSCS_DIAG.TRANSACTION_TABLE diagnostic table............cccccccooeviveeenns 222

D E= = N Y 012 T PP 223
BUIIE-IN TYPE OVEIVIEW......cci it a e e e e e e e neanes 223
N[1= T Toa Y o1 R PPSRURT 223
Data type assignments and comparison, sorting, and ordering............ccc......... 226
BIGINT data tYPe....ccci ittt e e e e e e e e e e r e e e e e e e e e s e e e anneneeees 229
BLOB data tYPe.....ccccciiiiiiiii e e e ettt e e e e e e e e e e e e e e s 230
BOOLEAN data tyPe....ccceiiiieiieiie ettt e e e e e s e st e e e e e e e e e s e e snnnneaees 231

(O o VY o P = N £ 1= TSRO 232
CHAR FOR BIT DATA data@ tyPe...eeeeeiiiiiieee e e eeiiieee e stteee e siieeee e s svneeee e 232
(o1 I @S o -1 - W 1 1 TSR 233
DATE data tYPe...cci ittt et e e e e e e e e e e e e e e e e e e s e e arnraeeeees 234
DECIMAL data Y Pe....uuuiriiiiiiiiieee e e e e ettt et e e e e e e s st e e e e e e e e e e s s e nnnnrrnaneeeees 235
DOUBLE data tYPe..cceiieeeiii ittt ettt e e e e e e s e e e e e e e e e e e e anns 236
DOUBLE PRECISION data tyPe.....ceeeiiiiiiieeeiiiiiieeeiiiiieee e s siieee e e sitieee e s sineeee e 236
FLOAT data tY ... iiiiiiiiiiiiie e e ettt e e e e e e e e e e e e e e e e s st raeeeeaaeeas 237
INTEGER data tYPe...ueeiiiiieeeeei ittt e e e e e e e e st ar e e e e e e e e e e 237
LONG VARCHAR data tyPe......cuueeeeeiiiiiee ettt 238
LONG VARCHAR FOR BIT DATA data type......cccovvuiieeeiiiiiieesiiieeeeessiieeeee s 238
NUMERIC data tYPe....ccciii ittt ettt e e e e e e e e s st e e e e s e e e e e e e aneanns 238
L]y o T L= U 1Y o1 TS PEUURR 239
SMALLINT data tYPe...eeeeeiiiiieeeiiiiiiee e eiiiieee ettt e ettt e e st e e e s sntaeeee e s snreeeeeeanes 239

QI LS = = U Y oL P PPEERPR: 240
TIMESTAMP data tYPe...eeeieiiiiiiie ittt ettt e e e s snaneee s 240
User-defined TYPES. . ..o 241
VARCHAR data tYPe....ccciii ittt e e e e e e e e e e e e eanenes 241
VARCHAR FOR BIT DATA data typPe.....c.uueeeeeiiiiiieeiiiiiiee e 242
DY o P = U 1Y/ 1= TP 242
Argument MatChiNg.......cocc e raaaea e e 244
Y@ I =TT = Y=o BV] o £ PO 246
Derby support for SQL:2011 fEAUIES.....ccccuuiiiiiiiieee e a e e 250
SQL:2011 features not supported by Derby.........coooiiiiiii e 263
Derby SYSIEM tADIES ... 267
SYSALIASES SYStemM tabl€...cccciiii i 267
SYSCHECKS SYStem tabl€......ccccoiiiiieee e 268
SYSCOLPERMS System tabl€.......cccoiiiiiiiiiiiiieeeeee e 268
SYSCOLUMNS system table........ccooiiiiiiiiiiice e 269
SYSCONGLOMERATES system table.......cccoooiiii e 271
SYSCONSTRAINTS system table.......ccccviiiiiiiee e 272
SYSDEPENDS SYStem table.......cuuuiiiiiiiiii i 273
SYSFILES SYStem table......uuiiiiiiiiieeiii e 273
SYSFOREIGNKEYS system table........ccooiiiiiiiiiiiiieee e 274
SYSKEYS SYSteM tabl€..uuueieiiiiiiiii e 274
SYSPERMS SYStem table.......ccooiiiiie e 275

Version 10.14 Derby Reference Manual

SYSROLES system table.........ooociiiiiiiiece e 276
SYSROUTINEPERMS SyStem table.......cccccccveiiiieiiiie e 278
SYSSCHEMAS SYStem tabl€.....cciiiiieeiiiiiiieeece e 279
SYSSEQUENCES system table........ccccviiiiiiii e 279
SYSSTATEMENTS system table.........coooiiiiiiii e 281
SYSSTATISTICS system table.......c.ooooiiiiiiii e 282
SYSTABLEPERMS System tabl€.......cccoceeiiiiiiiiiieeeeeeee e 282
SYSTABLES system table.......ccccuiiiiiiii e 284
SYSTRIGGERS System table......cccuviiiiiiiiiic e 285
SYSUSERS System table........coooiiiiiice e 286
SYSVIEWS SYStem table......cuuiiiiiiiiiicii e 287
XPLAIN Sty taDIES .. it e e e e e e e s reaaaeas 288
SYSXPLAIN_STATEMENTS system table.........cccccoviiiiiieiiee e 288
SYSXPLAIN_STATEMENT_TIMINGS system table......ccccccocveiiiviiiiieiiiiee s 290
SYSXPLAIN_RESULTSETS system table.......cccccocvueeiiiiiiiiie e 292
SYSXPLAIN_RESULTSET_TIMINGS system table.......cccccccceevviiriiiieenine e, 297
SYSXPLAIN_SCAN_PROPS system table.......cccccccveiiiiiiiiie i 299
SYSXPLAIN_SORT_PROPS system table......cccccceviiveiiiieiiee e 303
Derby exception messages and SQL StateS.......cocuiiieiiiiiiiee i 306
SQL error messages and eXCEPLIONS....iiuiiiieiiiiiiee e e e e siieeea e 306
1D L O) (=T =T oL o] =PTSRS 355
JAVA.SQL.DIIVEr INTEITACE.uuiiiiiiiiiec e e 355
java.sql.Driver.getPropertylnfo method..........cccccevveeeiiiiiiiiieee e 356
java.sql.DriverManager.getConnection method........c.ccccoooiiiiiiiiiiieieee e, 356
Derby database connection URL SYNaX..........uuuveeiieeeeeeiiiiiiiiiiiiieeeeeeeeeesesseinns 356
Syntax of database connection URLSs for applications with embedded
AtADASES. ... eeeiee e 357
Additional SQL SYNTAX........ccccuiiiiiiieiie e e e e se et e e e e e e e s e e e e e e e aee e s e e snnnnene 357
Attributes of the Derby database connection URLccccccevveveeeeiiiiiiiiiiinne, 358
java.sql.Connection INtErfaCe.......cccc oo 358
java.sgl.Connection.setTransactionlsolation method.............cccccccoeeiiiiiiiinnnnen. 359
java.sgl.Connection.setReadOnly method............ccovveiiieeeei e 359
java.sgl.Connection.isReadOnly method..........cccccccceeviiiiiiiiiiiicecec e, 359
Connection functionality not SUPPOIted...........ceevvevieeeeiiiiieeee e 360
java.sql.DatabaseMetaData interfacCe.........ccccoocciiiiiiiiiiee e 360
DatabaseMetaData reSUIt SELS........c.uuiiiiiiiiiiie i 360
Columns in the ResultSets returned by getFunctionColumns and
(o =Y o Tor=To (8] (=T @1] [V 431 o 1SR 360
java.sgl.DatabaseMetaData.getBestRowldentifier method...............ccccvvvveeen. 361
java.sql.Statement INterfaCE......ccccooi i 362
RESUILSEt ODJECES ..uvviiiiieiicei e 362
AULOGENEIALEA KEBYS.....cci ittt e e e e e e e s e e re e e e e e e e e e e e s annnnes 363
java.sql.CallableStatement interface.........ccococcvveieeiiiccicieee e 364
CallableStatements and OUT Parametersccccccevvivveeieiiiieeeeesniiieee s 364
CallableStatements and INOUT parameterscccccvveeeeeeeeeeeiiesiciiniieeeeeeeeeeen 364
java.sql.PreparedStatement interface..........ccocociiiiiiiiiiie e 365
Prepared statements and streaming COIUMNSccccvveeeieeieeeee i, 366
java.sql.ResUltSet iNtErfacCe........ccccuiiiiiiiii e 367
ResultSets and streaming COIUMNScccvviiiiiieeee e 368
java.sql.ResultSetMetaData interface...........ccooveeeiiieeeiii i 368
java.sql.SQLEXCEPLION ClaSS....cccccuiiiiiiiiiee e a e 369
java.sql.SQLWAINING ClaSS.....uuuiiiiieeeiii it e e e 369
java.SOL.SQLXML INtEIfaCE......ccci it 369
java.sql.Savepoint iNTErfaCe......cooviiiiii i 370

Vi

Version 10.14 Derby Reference Manual

Mapping of java.sql.Types t0 SQL tYPeS....cccvveeiiieeeeeiiiiiiiiiieie e 370
Mapping of java.sgl.Blob and java.sql.Clob interfaces.............ccccccvvvvveveenennnn 371
Features supported on JDBC 4.1 and aboVve..........c.oooiiiiiiieeiii e, 373
java.sgl.Connection interface: JDBC 4.1 features............cccccvvvveeeeieeeeeeeiiecccinnns 373
JDBC 4.2-0N1Y fEALUINES...uiieiiiie e ettt e e e e e e e e e e e 373
JDBC support for Java SE 8 Compact Profiles..........ccocovvvveeeeiiiiiiciiieeee, 373
java.sgl.DatabaseMetaData interface: JDBC 4.2 features..............cceecvvvvvnnnnnn. 374
java.sgl.SQLTYPE INEITACE.......ccee et 374
JDBC €SCAPE SYNTAX iiiiiiiiiieiiiiiiiin ettt e e e e e 374
JDBC escape keyword for call statements.............ccccvvveeeiiieeei e 375
JDBC escape syntax for LIKE ClaUSES..........cvvvveeeeiiiiiiiiiiiieeeee e 375
JDBC escape syntax for limit/offset clauses...........cccoovvveeeeieeiccceeeeee, 375
JDBC escape syntax for fn KeyWOrd............ooocciiiiiiiiiee et 376
JDBC escape syntax for OUter JOINS..........ccccuviviiiieieee e e e 382
JDBC escape syntax for time formats.............ccccccviiiiiieiee e 383
JDBC escape syntax for date formats.........cccccveeeeeeiiiiiiiiiiiieee e 383
JDBC escape syntax for timestamp formats.........cccccceeeeviiiiiiiiieeieeeee e, 383
Setting attributes for the database connection URLccccocoiiiiiiiiiiiiiiiiiieee e 385
bootPassword=Key attribULe...........cccciiiiiiiii e 385
collation=collation AttriDULE.........cooiiiiiiiie e 386
Create=true attribDULE.......cooi i e 386
createFrom=path attribULe........cccvviiiiiiee e 387
databaseName=nameOfDatabase attribute............cccccceviiiiiiiiiiiic i, 388
dataEncryption=true attribute...........cccoviririiii e 388
decryptDatabase=true attribute............cccciiiiiiiiiii e 389
deregister=false attribULe...........cooiiii e 390
ArOP=trU@ AttriDULE. . .eiiiii e e e e e e e e annnes 391
encryptionKey=Kkey attribUte...........cccciiiiiiiiii e 391
encryptionKeyLength=length attribute........cccccccoiiiiiiiiiii e, 392
encryptionProvider=providerName attribute...............coeeciiiiieiiiieee e, 392
encryptionAlgorithm=algorithm attribute.............ccoovi e, 393
falloOVer=true attribDULE........ccueiiii e 394
logDevice=logDirectoryPath attribute..........cccccvveeiiiiiii e, 394
newBootPassword=newPassword attribute.........cccccccvviiiiiiii i, 395
newENncryptionKey=key attribute........cccccvvviieeiiiiiiieeee e 395
password=userPassword attribUte........cccccceeiiiiiiiiiiiiee e 396
restoreFrom=path attribUte..........ccooiiiiiiii e 396
retrieveMessageText=false attribute..........ccccccceiiiiiiiiiiiiiiic e, 396
rollForwardRecoveryFrom=path attribute............c.ccoooiiiiiiiiii e, 397
securityMechanism=value attribute.........ccccccceeiiiiiiiiiiiice e 397
ShUtdOWN=ErUE AttriDULE....coi i 397
slaveHost=hostname attribULe..........ccooiiiiiiiiiiii e 398
slavePort=portValue attribUte........ccccciieiiiii e 399
SSI=SSIMOAE AtIITDULE. .. .ueiiiiiiiiie e 399
startMaster=true attribULe.........cueiii i 399
startSlave=true attribDULE.........coooiiiie e 400
StOPMaASLEr=true attribDULE.......uuvieieiiieee e 401
stopSlave=true attribBULE...........cco e 401
territory=ll_CC attribDULE......ccuviiieeeiiie e 402
traceDirectory=path attribUte...........cccooiiiiiiiiiii e 403
traceFile=path attribute.........cccciiiii e 403
traceFileAppend=true attribute............ccooiiiiiii e 404
traceLevel=value attribULe. ... 404
UPGrade=true attribULE.......ccoiiiii i a e e 405
user=userName attribDULE........occuiiiiiii e 406

Vii

Version 10.14 Derby Reference Manual

Creating a connection without specifying attributes...........ccccccciviiieeniiinenn, 406
(DT o)A o1 o o =T 4 4 A =1 (=T (=] o PSSR 407
Scope Of DErbY PrOPEIrtiES....uuuuiiiiiiie e ii et e e e e 407
Dynamic and StatiC PropPerties.......ccccuiiieiiiee e a e 407
(DT o) VA o] 0 o 1T ¢ A =R 407
derby.authentication.builtin.algorithm..............cccoo e, 410
derby.authentication.builtin.iterations...........ccccccco i 411
derby.authentication.builtin.saltLength.................ccooiii e, 411
derby.authentication.ldap.searchAUuthDN..............cccccceeii i, 412
derby.authentication.ldap.searchAuthPW............cccccvveeeiiiiiiieeee e, 413
derby.authentication.ldap.searchBase.............cccuvveeeeiieeei e, 413
derby.authentication.ldap.searchFilter..............ooocciiiiiiii e, 414
derby.authentication.native.passwordLifetimeMillis.................cocvviviieeireeneeennn 414
derby.authentication.native.passwordLifetimeThreshold...............ccccoveeeeeeennn. 415
derby.authentication.ProVider............ccuuiiiiiiiiee e 416
derby.authentiCatioN.SEIVET............ccc i ea s 417
derby.connection.requireAuthentiCation...............oooeeciiviiiieeeee e 418
derby.database.Classpath............cccciiiiiiiiiee e 419
derby.database.defaultConnectionMode...........cccoeeeeeiiiiiiiiiiiiiieiccee e 419
derby.database.forceDatabaseLocK...........cccvvveeiieeieiiiiii e 420
derby.database.fUllACCESSUSEIS.........uuiiiiiiiieee et 421
derby.database.NOAULOBOOL.euiiiiiieee e e e e e e e e 421
derby.database.properti@SONIY..........cceeiiiiiiiiiiieie e 422
derby.database.readOnlYACCESSUSEIS......cccceeeeeiiiiiiiiiireee e ee s 422
derby.database.sqIAUthOrIZatioN..............uueviiiiie e 423
derby.infolog.apPPENG.........ccoi i e e 423
derby.jdbc.XxaTransactioNTIMEOUL............cciiiiiiiiiiieii e e 424
derby.language.logQUETNYPIAN............coiieeiii i e 424
derby.language.logStatemMentTEXL........uuiiiieieiiiii e 425
derby.language.sequence.prealloCator............ccvvveiveieeeei i 425
derby.language.statementCacheSize...........cccoovviiiiiiiiieeie e, 426
derby.locks.deadloCKTIMEOUL..........ceviiiieeeie i e e e e 426
derby.locks.deadlOCKTIACE.ciiiiee e 427
derby.locks.escalationThreshold.............cccevviieii i 427
derby.l0CKS.MONITON. ..ot e e e e e e e e e e e e s e eaens 428
derby.l0CKS.WaItTIMEOUL............uuiiiiiiiiiee e e e e e e e e e e 428
derby.replication.logBUferSIze............ooooiiiiiiiiiie e 429
derby.replication.maxLogShippingInterval.............ccccoviiiieee e, 430
derby.replication.minLogShippingInterval..............cccoviiiiee e, 430
derby.replication.VerbBOSe.uuueiiiiiiii e 430
derby.storage.indexStats.autO...........cocciviiiiiiieee e 431
derby.storage.indexStats.[0g........uuuvriiiiieeiii e 431
derby.storage.indexStatS.tracCe.cooeicciiiiiiiii e 432
derby.storage.initialPages..........coooi i 433
derby.storage.minimumRECOIdSIZE...........ccccviiiiiiiiee e 433
derby.storage.pageCacheSize..........ccouiiiiiiiiiii e 434
derby.storage.pageReSErVEASPACE.coieciiiiiiiiiie e 435
derby.StOrage.PAgESIZE......ccccco ittt 435
derby.Storage.rOWLOCKING.uuiiiiiiiieie e e e e e e e e s s e e e e e e e e e e s aeanns 436
derby.storage.temMPDIrECIOIY.........coiciiiiiiiieeeee e e 437
derby.storage.useDefaultFilePermisSions..........ccccvvvieeeeei i e 437
derby.stream.error.extendedDiagSeverityLevel..........cccoceveeveeciiiiiiiiciiiieeeeeee, 439
derby.stream.error.field............uueeeiiiii e 440
derby.stream.error.file.........cciiie e 440
derby.stream.error.logBOOITIACE.uuuiiiieee e 440

viii

Version 10.14 Derby Reference Manual

derby.stream.error.logSeverityLeVeL.........ccccccviiiiiiiiiiieeee e 441
derby.stream.error.method..........cccueeiiiiieeiie e 442
derby.stream.error.rollingFile.count..............ceeveiieee e 442
derby.stream.error.rollingFile.limit...........ccccceeeiii i, 443
derby.stream.error.rollingFile.pattern...........ccccuviiiiiee e 443
derby.Stream.erTOr.StYIE. ... 445
derby.SyStEM.DOOTAIL.......oeeeeieeeee e —————————— 445
derby.system.durability.............oeeiieiiiiiii i ———— 446
derby.SYStEM.NOME.t 447
derby.USEr.USEINGIME. ... e e e e e e e e e aeeanes 447

(D= (= 1 Tox (0] T YAV AT £ o] o AU 448

Java EE compliance: Java Transaction APl and javax.sql interfaces.............cccc........ 449
THE JTA AP ettt et e et e et e e e st e e e este e e st e e anbaeeataeeennes 450
Recovered global tranSactionS..............ooiciiiiieiieeie e 450
XAConnections, user names and PasSWOIdS...........ueeeveeeeeeiiiiiiiiiiinnreereeeeeeeen 450

XA transactions and deferred CONSIraiNtS.........cooocveeeeiiiiiiee i 450
javax.sql: IDBC INtEITACES.......ccocciiiiiiieee e a e e e e 451

D= o}V N SRS 452
Stand-alone tools and ULIITIES.......ccuviiiiiiiiii e 452
JDBC implementation ClaSSEeS.......uuuiiiiiiieie ittt e e e e e 452

|11 o [)Y/= T £ PP PR 452
DataSOoUIrCE CIASSES.uveiiieiiiiiiie ettt a e s e st e e e e enees 452
Miscellaneous utilities and iNterfaces.......cccociiiiiiiiii i 453

YU o o Jo T (=T B Lo Tt 11U 454
(D1 o)A L0 11 = AT o = PREPUPRRR 455
Limitations for database Values.........ccevviiiiiiiii e 455
DATE, TIME, and TIMESTAMP liMitationS.......cccccceeiiiieiiiiesie e eee e 455
Limitations on identifier [ength ... 456
NUMENIC HMITALIONS..oii it et e e e s eeeeanes 456
SHNG lIMITATIONS ... e e e e e e e e e 457

DY T 1011 = U o] 1= PP RRTPRRRR 457

LI 10 L= 4=V PRSP PP 459

Derby Reference Manual
Apache Software FoundationDerby Reference ManualApache Derby

10

Derby Reference Manual

Copyright

Apache Derby %

Copyright 2004-2018 The Apache Software Foundation

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0.

Related information

License

11

http://www.apache.org/licenses/LICENSE-2.0

Derby Reference Manual
License

The Apache License, Version 2.0

Apache License
Version 2.0, January 2004
http://ww. apache. org/licenses/

TERMS AND CONDI TI ONS FOR USE, REPRODUCTI ON, AND DI STRI BUTI ON
1. Definitions.

"Li cense" shall nmean the terns and conditions for use
reproduction, and distribution as defined by Sections 1 through
9 of this docunent.

"Li censor" shall mean the copyright owner or entity authorized
by the copyright owner that is granting the License

"Legal Entity" shall nean the union of the acting entity and al
other entities that control, are controlled by, or are under
common control with that entity. For the purposes of this
definition, "control" neans (i) the power, direct or indirect,
to cause the direction or managenent of such entity, whether by
contract or otherwise, or (ii) ownership of fifty percent (50%
or nmore of the outstanding shares, or (iii) beneficial ownership
of such entity.

"You" (or "Your") shall nmean an individual or Legal Entity
exerci sing perm ssions granted by this License.

"Source" formshall nean the preferred formfor naking
nodi fi cations, including but not linted to software source code
docunent ati on source, and configuration files.

"Cbject" formshall nean any formresulting from nechani ca
transformation or translation of a Source form including but
not limted to conpiled object code, generated docunentation,
and conversions to other nedia types.

"Work" shall nean the work of authorship, whether in Source or
Ooj ect form nade avail abl e under the License, as indicated by a
copyright notice that is included in or attached to the work

(an example is provided in the Appendi x bel ow).

"Derivative Wrks" shall mean any work, whether in Source or
oject form that is based on (or derived fronm) the Wrk and
for which the editorial revisions, annotations, el aborations,
or other nodifications represent, as a whole, an original work
of authorship. For the purposes of this License, Derivative
Works shall not include works that remain separable from or
nerely link (or bind by nane) to the interfaces of, the Wrk
and Derivative Wrks thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any nodifications or
additions to that Work or Derivative Wrks thereof, that is
intentionally submtted to Licensor for inclusion in the Wrk
by the copyright owner or by an individual or Legal Entity
authorized to subnmit on behalf of the copyright owner. For the
purposes of this definition,

"submtted" means any form of electronic, verbal, or witten
comuni cation sent to the Licensor or its representatives,
including but not limted to comrunication on electronic mailing
lists, source code control systenms, and issue tracking systens

12

Derby Reference Manual

that are nmanaged by, or on behalf of, the Licensor for the
purpose of discussing and i nproving the Work, but excl uding
communi cation that is conspicuously nmarked or otherw se
designated in witing by the copyright owner as "Not a
Contri bution.™"

"Contributor" shall nean Licensor and any individual or Legal
Entity on behal f of whom a Contribution has been recei ved by
Li censor and subsequently incorporated within the Wrk.

Grant of Copyright License. Subject to the terns and conditions
of this License, each Contributor hereby grants to You a

per petual, worldw de, non-exclusive, no-charge, royalty-free,
irrevocabl e copyright license to reproduce, prepare Derivative
Works of, publicly display, publicly perform sublicense, and
distribute the Work and such Derivative Wrks in Source or

Obj ect form

Grant of Patent License. Subject to the ternms and conditions of
this License, each Contributor hereby grants to You a perpetual,
wor | dwi de, non-excl usi ve, no-charge, royalty-free, irrevocable
(except as stated in this section) patent |icense to make, have
made, use, offer to sell, sell, inport, and otherw se transfer
the Wrk, where such license applies only to those patent clains
l'i censabl e by such Contributor that are necessarily infringed by
their Contribution(s) alone or by conbination of their
Contribution(s) with the Wrk to which such Contribution(s) was
submitted. If You institute patent litigation against any entity
(including a cross-claimor counterclaimin a lawsuit) alleging
that the Work or a Contribution incorporated within the Wrk
constitutes direct or contributory patent infringenent, then any
patent |icenses granted to You under this License for that Wrk
shall terminate as of the date such litigation is filed.

Redi stri bution. You may reproduce and distribute copies of the
Work or Derivative Wrks thereof in any nedium wth or wthout
nmodi fications, and in Source or (bject form provided that You
neet the follow ng conditions:

(a) You must give any other recipients of the Work or
Derivative Wrks a copy of this License; and

(b) You nust cause any nodified files to carry promi nent notices
stating that You changed the files; and

(c) You nust retain, in the Source formof any Derivative Wrks
that You distribute, all copyright, patent, trademark, and
attribution notices fromthe Source formof the Wrk,
excl udi ng those notices that do not pertain to any part of
the Derivative Wrks; and

(d) If the Work includes a "NOTICE" text file as part of its
di stribution, then any Derivative Wrks that You distribute
nmust include a readable copy of the attribution notices
contai ned within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Wrks, in
at | east one of the follow ng places: within a NOTICE text
file distributed as part of the Derivative Wrks; within the
Source form or docunentation, if provided along with the
Derivative Wrrks; or, within a display generated by the
Derivative Wrks, if and wherever such third-party notices
normal | y appear. The contents of the NOTICE file are for
i nformati onal purposes only and do not nodify the License.
You may add Your own attribution notices within Derivative
Works that You distribute, alongside or as an addendumto
the NOTICE text fromthe Work, provided that such additional
attribution notices cannot be construed as nodifying the
Li cense.

You may add Your own copyright statenent to Your nodifications

13

Derby Reference Manual

and nay provide additional or different |license terns and
conditions for use, reproduction, or distribution of Your

nodi fications, or for any such Derivative Wrks as a whol e,
provi ded Your use, reproduction, and distribution of the Work
ot herwi se conplies with the conditions stated in this License.

Submi ssi on of Contributions. Unless You explicitly state

ot herwi se, any Contribution intentionally subnmitted for
inclusion in the Wrk by You to the Licensor shall be under the
ternms and conditions of this License, w thout any additional
terns or conditions. Notwithstanding the above, nothing herein
shal | supersede or nodify the terns of any separate |icense
agreenent you may have executed with Licensor regardi ng such
Contri buti ons.

Trademarks. This License does not grant perm ssion to use the
trade names, trademarks, service marks, or product nanes of the
Li censor, except as required for reasonable and custonary use
in describing the origin of the Wrk and reproducing the content
of the NOTICE file.

Di scl ai ner of Warranty. Unless required by applicable | aw or
agreed to in witing, Licensor provides the Wrk (and each
Contri butor provides its Contributions) on an "AS | S* BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or
inmplied, including, without limtation, any warranties or
conditions of TITLE, NON- I NFRI NGEMENT, MERCHANTABI LITY, or

FI TNESS FOR A PARTI CULAR PURPCSE. You are solely responsible for
determ ni ng the appropriateness of using or redistributing the
Work and assune any risks associated with Your exercise of
permi ssi ons under this License

Limtation of Liability. In no event and under no |egal theory,
whet her in tort (including negligence), contract, or otherw se,
unl ess required by applicable | aw (such as deliberate and
grossly negligent acts) or agreed to in witing, shall any
Contributor be liable to You for danmages, including any direct,
indirect, special, incidental, or consequential danages of any
character arising as a result of this License or out of the use
or inability to use the Work (including but not limted to
danmages for |oss of goodw ||, work stoppage, conputer failure or
mal function, or any and all other conmercial danmages or | osses),
even i f such Contributor has been advi sed of the possibility of
such damages.

Accepting Warranty or Additional Liability. Wile redistributing
the Work or Derivative Wrks thereof, You may choose to offer

and charge a fee for, acceptance of support, warranty, indemity,
or other liability obligations and/or rights consistent with this
Li cense. However, in accepting such obligations, You may act only
on Your own behal f and on Your sole responsibility, not on behal f
of any other Contributor, and only if You agree to i ndemify,

def end, and hol d each Contributor harm ess for any liability
incurred by, or clains asserted agai nst, such Contributor by
reason of your accepting any such warranty or additiona
liability.

END OF TERVS AND CONDI Tl ONS

APPENDI X: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the foll ow ng
boil erpl ate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
coment syntax for the file format. W al so recommend that a
file or class nanme and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives

14

Derby Reference Manual
Copyright [yyyy] [name of copyright owner]

Li censed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.
You may obtain a copy of the License at

http://ww. apache. org/ |l i censes/ LI CENSE-2. 0

Unl ess required by applicable |aw or agreed to in witing, software
di stributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KI ND, either express or
inmplied. See the License for the specific | anguage governing

perm ssions and |limtations under the License.

15

Derby Reference Manual

About this guide

For general information about the Derby documentation, such as a complete list of books,
conventions, and further reading, see Getting Started with Derby.

For more information about Derby, visit the Derby website at http://db.apache.org/derby.
The website provides pointers to the Derby Wiki and other resources, such as the
derby-users mailing list, where you can ask questions about issues not covered in the
documentation.

Purpose of this document

This document, the Derby Reference Manual, provides reference information about
Derby.

It covers Derby's SQL language, the Derby implementation of JDBC, Derby system
catalogs, Derby error messages, Derby properties, and SQL keywords.

Audience

This document is a reference for Derby users, typically application developers.

Derby users who are not familiar with the SQL standard or the Java programming
language will benefit from consulting documentation on those topics.

Derby users who want a how-to approach to working with Derby or an introduction to
Derby concepts should read the Derby Developer's Guide.

How this guide is organized
This guide includes the following sections.
* SQL language reference

Reference information about Derby's SQL language, including manual pages for
statements, functions, and other syntax elements.
* Argument matching

Information about argument matching in Java functions and procedures.
* SQL reserved words

SQL keywords beyond the standard keywords.
» Derby support for SQL:2011 features

Lists of SQL:2011 features that Derby does and does not support.
» Derby system tables

Reference information about the Derby system catalogs.
e XPLAIN style tables

Information about the optional XPLAIN style system tables.
« Derby exception messages and SQL states

Information about Derby exception messages.
« JDBC reference

Information about Derby's implementation of the Java Database Connectivity
(JDBC) API.
 Setting attributes for the database connection URL

16

http://db.apache.org/derby/

Derby Reference Manual

Information about the supported attributes to Derby's JDBC database connection
URL.
« Derby property reference

Information about Derby properties.
« Java EE compliance: Java Transaction APl and javax.sql interfaces

Information about Derby's support for the Java EE platform, in particular support for
the Java Transaction API and the JDBC API.
« Derby API

Notes about proprietary APIs for Derby.
e Supported locales

Locales supported by Derby.
¢ Derby limitations

Limitations of Derby.

SQL syntax used in this manual
SQL syntax is presented in modified BNF notation.
The meta-symbols of BNF are listed in the following table.

Table 1. BNF meta-symbols

Symbol Meaning

Or. Choose one of the items.

[a—

Encloses optional items.

* Flags items that you can repeat 0 or more times. Has a
special meaning in some SQL statements.

{1} Groups required items so that they can be marked with the
symbol | . Has a special meaning in JDBC escape syntax
(see JDBC escape syntax).

() ., Other punctuation that is part of the syntax.

The following example shows how SQL syntax is presented:

CREATE [UNIQUE] | NDEX i ndexNarme
ON t abl eNane (si npl eCol umNane [, sinpleCol umName]*)

17

Derby Reference Manual

SQL language reference

Derby implements a subset of the SQL standard.

This section provides an overview of the current SQL language by describing the
statements, built-in functions, data types, expressions, and special characters it contains.

Capitalization and special characters

Using the classes and methods of JDBC, you submit SQL statements to Derby as
strings. The character set permitted for strings containing SQL statements is Unicode.

Within these strings, the following rules apply:
» Double quotation marks delimit special identifiers referred to in SQL as delimited
identifiers.
 Single quotation marks delimit character strings.
< Within a character string, to represent a single quotation mark or apostrophe, use
two single quotation marks. (In other words, a single quotation mark is the escape
character for a single quotation mark.)

A double quotation mark does not need an escape character. To represent a double
guotation mark, simply use a double quotation mark. However, note that in a Java
program, a double quotation mark requires the backslash escape character.

Example:

-- a single quotation mark is the escape character
-- for a single quotation nark

VALUES ' Joe''s unbrella’
-- inij, you don't need to escape the double quotation narks
VALUES 'He said, "hello!"'

n = stnt.execut eUpdat e(
"UPDATE aTabl e setStringcol = 'He said, \"hello!\""");

* SQL keywords are case-insensitive. For example, you can type the keyword
SELECT as SELECT, Select, select, or SELECT.

* SQL-style identifiers are case-insensitive (see SQLIdentifier), unless they are
delimited.

» Java-style identifiers are always case-sensitive.

* *is a wildcard within a selectExpression. See The * wildcard. It can also be the
multiplication operator. In all other cases, it is a syntactical metasymbol that flags
items you can repeat O or more times.

* % and _ are character wildcards when used within character strings following a
LIKE operator (except when escaped with an escape character). See Boolean
expressions.

» Comments can be either single-line or multiline as per the SQL standard. Single-line
comments start with two dashes (--) and end with the newline character. Multiline
comments are bracketed, start with forward slash star (/*), and end with star forward
slash (*/). Note that bracketed comments may be nested. Any text between the
starting and ending comment character sequence is ignored.

SQL identifiers

An identifier is the representation within the language of items created by the user, as
opposed to language keywords or commands.

18

Derby Reference Manual

Some identifiers stand for dictionary objects, which are the objects you create -- such as
tables, views, indexes, columns, and constraints -- that are stored in a database. They
are called dictionary objects because Derby stores information about them in the system
tables, sometimes known as a data dictionary. SQL also defines ways to alias these
objects within certain statements.

Each kind of identifier must conform to a different set of rules. Identifiers representing
dictionary objects must conform to SQL identifier rules and are thus called SQLIdentifiers.

Rules for SQL identifiers

Ordinary identifiers are identifiers not surrounded by double quotation marks. Delimited
identifiers are identifiers surrounded by double quotation marks.

An ordinary identifier must begin with a letter and contain only letters, underscore
characters (), and digits. The permitted letters and digits include all Unicode letters and
digits, but Derby does not attempt to ensure that the characters in identifiers are valid in
the database's locale.

A delimited identifier can contain any characters within the double quotation marks.
The enclosing double quotation marks are not part of the identifier; they serve only to
mark its beginning and end. Spaces at the end of a delimited identifier are insignificant
(truncated). Derby translates two consecutive double quotation marks within a delimited
identifier as one double quotation mark-that is, the "translated" double quotation mark
becomes a character in the delimited identifier.

Periods within delimited identifiers are not separators but are part of the identifier (the
name of the dictionary object being represented).

So, in the following example:

"A B"

is a dictionary object, while
"A"."B"

is a dictionary object qualified by another dictionary object (such as a column named "B"
within the table "A").

SQLIdentifier

An SQLlIdentifier is a dictionary object identifier that conforms to the rules of SQL.

SQL states that identifiers for dictionary objects are limited to 128 characters and are
case-insensitive (unless delimited by double quotes), because they are automatically
translated into uppercase by the system. You cannot use reserved words as identifiers
for dictionary objects unless they are delimited. If you attempt to use a name longer than
128 characters, SQLException X0X11 is raised.

Derby defines keywords beyond those specified by the SQL standard (see SQL reserved
words).

Example

-- the view nanme is stored in the

-- system cat al ogs as AN DENTI FI ER

CREATE VI EW Anl denti fier (RECEIVED) AS VALUES 1

-- the view nane is stored in the system

-- catalogs with case intact

CREATE VI EW " ACaseSensitiveldentifier" (RECEIVED) AS VALUES 1

19

Derby Reference Manual
This section describes the rules for using SQLIdentifiers to represent the following
dictionary objects.
Qualifying dictionary objects

Since some dictionary objects can be contained within other objects, you can qualify
those dictionary object names. Each component is separated from the next by a period.
An SQLlIdentifier is "dot-separated.” You qualify a dictionary object name in order to avoid
ambiguity.

aggregateName

An aggregateName represents a user-defined aggregate (UDA). To create a UDA, use
the CREATE DERBY AGGREGATE statement.

Syntax

[schemaNanme.] SQ.ldentifier

You can qualify an aggregate name with a schemaName. If a qualified aggregate name
is specified, the schema name cannot begin with SYS.

Example

-- types.maxPrice is an aggregateNane that includes a schemaNane
CREATE DERBY AGGREGATE types. maxPrice FOR PRI CE
EXTERNAL NAME ' com exanpl e. myapp. types. Pri ceMaxer"' ;

authorizationldentifier

User names within the Derby system are known as authorization identifiers. The
authorization identifier represents the name of the user, if one has been provided in the
connection request. The default schema for a user is equal to its authorization identifier.
User names can be case-sensitive within the authentication system, but they are always
case-insensitive within Derby's authorization system unless they are delimited. For more
information, see "Users and authorization identifiers" in the Derby Security Guide.

Syntax

SQLl dentifier

Example

CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(
' der by. dat abase. ful | AccessUsers', ' Anber, FRED)

columnName

In many places in the SQL syntax, you can represent the name of a column by qualifying
it with a tableName or correlationName.

In some situations, you cannot qualify a columnName with a tableName or a
correlationName, but must use a simpleColumnName instead. Those situations are:

« Creating a table (CREATE TABLE statement)

» Specifying updatable columns in a cursor

* In a column’'s correlation name in a SELECT expression (see selectExpression)

* In a column’'s correlation name in a tableExpression (see tableExpression)
You cannot use correlationNames for updatable columns; using correlationNames in this
way will cause an SQL exception. For example:

20

Derby Reference Manual
SELECT c11 AS col1, cl1l2 AS col 2, c13 FROMt1l FOR UPDATE of c11,cl13

In this example, the correlationNamecol 1 FOR c11 is not permitted because c11 is
listed in the FOR UPDATE list of columns. You can use the correlationNameFOR c12
because it is not in the FOR UPDATE list.

Syntax

[{ tableNane | correlationNane } .] SQ.ldentifier

Example

-- C. Country is a columNanme qualified with a correl ati onNane.
SELECT C. Country
FROM APP. Countries C

constraintName
A constraintName represents a constraint (see CONSTRAINT clause).

Syntax

[schemaNane.] SQ.ldentifier

You can qualify a constraintName with a schemaName, but the schemaName of the
constraint must be the same as the schemaName of the table on which the constraint is
placed.

Example

-- country fk2 is a constraint nanme
CREATE TABLE DETAI LED MAPS (COUNTRY_I| SO CODE CHAR(2)
CONSTRAI NT country_f k2 REFERENCES COUNTRI ES)

-- sl.cl is a schenma-qualified constraint; the schema nane

-- is not required here, but if specified nmust match that of the table
CREATE SCHEMA s1,

CREATE TABLE s1.t1 (a INT, CONSTRAINT sl.cl CHECK (a > 0));

correlationName

A correlationName is given to a table expression in a FROM clause as a new name or
alias for that table. You cannot qualify a correlationName with a schemaName.

You cannot use correlationNames for updatable columns; using correlationNames in this
way will cause an SQL exception. For example:

SELECT c11 AS col1, c12 AS col 2, ¢13 FROMt1l FOR UPDATE of c11,c13

In this example, the correlationNamecol 1 FOR c11 is not permitted because c11 is
listed in the FOR UPDATE list of columns. You can use the correlationNameFOR c12
because it is not in the FOR UPDATE list.

Syntax
SQLl dentifier
Example

-- Cis a correl ati onNane
SELECT C. NAVE
FROM SAMP. STAFF C

21

Derby Reference Manual

cursorName

A cursorName refers to a cursor. No SQL language command exists to assign a name

to a cursor. Instead, you use the JDBC API to assign hames to cursors or to retrieve
system-generated names. For more information, see the Derby Developer's Guide. If you
assign a name to a cursor, you can refer to that name from within SQL statements.

You cannot qualify a cursorName.
Syntax
SQLl dentifier

Example

st nt . execut eUpdat e(" UPDATE SAMP. STAFF SET COW = " +
"COW + 20 " + "WHERE CURRENT OF " + Result Set. get CursorNane());

functionName

indexName

A functionName represents a Java function. To create a function, use the CREATE
FUNCTION statement.

Syntax

[schemaNane.] SQLldentifier

You can qualify a function name with a schemaName. If a qualified function name is
specified, the schema name cannot begin with SYS.

Example

-- Declaring a scalar function

CREATE FUNCTI ON TO_DEGREES

(RADI ANS DOUBLE)

RETURNS DOUBLE

PARAVETER STYLE JAVA

NO SQ LANGUAGE JAVA

EXTERNAL NAME 'j ava. | ang. Mat h. t oDegr ees' ;

An indexName represents an index. To create an index, use the CREATE INDEX
statement.

Syntax

[schemaNane .] SQ.ldentifier

You can qualify an index name with a schemaName. If a qualified index name is
specified, the schema name cannot begin with SYS.

Example

DROP | NDEX APP. ORI G NDEX;
-- Oiglndex is an i ndexName w t hout a schenmaNane
CREATE | NDEX ORI G NDEX ON FLI GHTS (ORI G_Al RPCRT)

newTableName

A newTableName represents a renamed table (see RENAME TABLE statement). You
cannot qualify a newTableName with a schemaName.

22

Derby Reference Manual
Syntax
SQLl dentifier

Example

-- FLI GHTAVAI LABLE i s a newTabl eNane
RENAME TABLE FLI GHTAVAI LABI LI TY TO FLI GHTAVAI LABLE

procedureName

A procedureName represents a Java stored procedure. To create a procedure, use the
CREATE PROCEDURE statement.

Syntax

[schemaNane.] SQLldentifier

You can qualify a procedure name with a schemaName. If a qualified procedure name is
specified, the schema name cannot begin with SYS.

Example

-- SALES. TOTAL_REVENUE i s a procedureNane that includes a schemaNanme
CREATE PROCEDURE SALES. TOTAL_REVENUE(I N S_MONTH | NTEGER,

IN S_YEAR | NTEGER,

OUT TOTAL DECI MAL(10, 2))
PARAVETER STYLE JAVA READS SQL DATA LANGUAGE JAVA EXTERNAL NANVE
' com exanpl e. sal es. cal cul at eRevenueByMont h'

roleName
A roleName refers to an SQL role. A role in a database is uniquely identified by its role
name.
Syntax
SQLl dentifier
In terms of SQL, a role name is also technically an authorizationldentifier, but that term is
often used for user names in Derby for historical reasons.
Example
DROP ROLE reader
schemaName

A schemaName represents a schema. Schemas contain other dictionary objects, such
as tables and indexes. Schemas provide a way to hame a subset of tables and other
dictionary objects within a database.

You can explicitly create or drop a schema. The default user schema is the APP schema
(if no user name is specified at connection time). You cannot create objects in schemas
starting with SYS.

Thus, you can qualify references to tables with the schema name. When a schemaName
is not specified, the default schema name is implicitly inserted. System tables are placed
in the SYS schema. You must qualify all references to system tables with the SYS
schema identifier. For more information about system tables, see Derby system tables.

23

Derby Reference Manual

A schema is hierarchically the highest level of dictionary object, so you cannot qualify a
schemaName.

Syntax

SQLl dentifier

Example

-- SAMWP. EMPLOYEE is a tabl eNane qualified by a schemaNane
SELECT COUNT(*) FROM SAMP. EMPLOYEE

-- You must qualify systemtable names with their schema, SYS
SELECT COUNT(*) FROM SYS. SysCol umms

sequenceName

A sequenceName represents a sequence generator. To create a sequence generator,
use the CREATE SEQUENCE statement.

Syntax
[schemaNane.] SQLldentifier

You can qualify a sequence name with a schemaName. If a qualified sequence name is
specified, the schema name cannot begin with SYS.

Example

DROP SEQUENCE order _i d RESTRI CT

simpleColumnName

A simpleColumnName is used to represent a column when it cannot be qualified by a
tableName orbcorrelationName. This is the case when the qualification is fixed, as it is in
a column definition within a CREATE TABLE statement.

Syntax
SQ.lIdentifier

Example

-- country is a sinpleCol uimNane
CREATE TABLE CONTI NENT (COUNTRY VARCHAR(26) NOT NULL PRI MARY KEY,
COUNTRY_| SO CODE CHAR(2), REG ON VARCHAR(26))

synonymName

tableName

A synonymName represents a synonym for a table or a view. To create a synonym, use
the CREATE SYNONYM statement.

Syntax
[schemaNane.] SQLldentifier

You can qualify a synonym name with a schemaName. If a qualified synonym name is
specified, the schema name cannot begin with SYS.

A tableName represents a table. To create a table, use the CREATE TABLE statement.

24

Derby Reference Manual

triggerName

typeName

viewName

Syntax

[schemaNanme.] SQ.ldentifier

You can qualify a table name with a schemaName. If a qualified table name is specified,
the schema name cannot begin with SYS.

Example

-- SAMP. PROJECT is a tabl eNane that includes a schemaNanme
SELECT COUNT(*) FROM SAMP. PRQJECT

A triggerName refers to a trigger created by a user. To create a trigger, use the CREATE
TRIGGER statement.

Syntax

[schemaNane .] SQ.ldentifier

You can qualify a trigger name with a schemaName. If a qualified trigger name is
specified, the schema name cannot begin with SYS.

Example

DROP TRI GGER TRI G1

A typeName represents a user-defined type (UDT). To create a UDT, use the CREATE
TYPE statement.

Syntax

[schemaNane.] SQ.ldentifier

You can qualify a type name with a schemaName. If a qualified type name is specified,
the schema name cannot begin with SYS.

Example

CREATE TYPE price
EXTERNAL NAME ' com exanpl e. types. Pri ce'
LANGUAGE JAVA

A viewName represents a table or a view. To create a view, use the CREATE VIEW
statement.

Syntax
[schemaNane.] SQ.ldentifier

You can qualify a view name with a schemaName. If a qualified view name is specified,
the schema name cannot begin with SYS.

Example

-- This is a view qualified by a schemaNane
SELECT COUNT(*) FROM SAMP. EMP_RESUME

25

Derby Reference Manual

Statements

This section provides manual pages for both high-level language constructs and parts
thereof. For example, the CREATE INDEX statement is a high-level statement that you
can execute directly via the JDBC interface. This section also includes clauses, which
are not high-level statements and which you cannot execute directly but only as part

of a high-level statement. The ORDER BY and WHERE clauses are examples of this
kind of clause. Finally, this section also includes some syntactically complex portions of
statements called expressions, for example selectExpression and tableSubquery. These
clauses and expressions receive their own manual pages for ease of reference.

Unless it is explicitly stated otherwise, you can execute or prepare and then execute
all the high-level statements, which are all marked with the word statement, via the
interfaces provided by JDBC. This manual indicates whether an expression can be
executed as a high-level statement.

The sections provide general information about statement use, and descriptions of the
specific statements.

Interaction with the dependency system

Derby internally tracks the dependencies of prepared statements, which are SQL
statements that are precompiled before being executed. Typically they are prepared
(precompiled) once and executed multiple times.

Prepared statements depend on the dictionary objects and statements they reference.
(Dictionary objects include tables, columns, constraints, indexes, views, and triggers.)
Removing or modifying the dictionary objects or statements on which they depend
invalidates them internally, which means that Derby will automatically try to recompile
the statement when you execute it. If the statement fails to recompile, the execution
request fails. However, if you take some action to restore the broken dependency (such
as restoring the missing table), you can execute the same prepared statement, because
Derby will recompile it automatically at the next execute request.

Statements depend on one another-an UPDATE WHERE CURRENT statement depends
on the statement it references. Removing the statement on which it depends invalidates
the UPDATE WHERE CURRENT statement.

In addition, prepared statements prevent execution of certain DDL statements if there are
open results sets on them.

Manual pages for each statement detail what actions would invalidate that statement, if
prepared.

Here is an example using the Derby tool ij:

i j > CREATE TABLE nytabl e (mycol [|NT);

0 rows inserted/ updated/del eted

ij> INSERT | NTO nytable VALUES (1), (2), (3);

3 rows inserted/ updat ed/ del et ed

-- this exanple uses the ij conmmand prepare,

-- which prepares a statenent

ij> prepare pl AS 'INSERT | NTO MyTabl e VALUES (4)"';
-- pl depends on nytabl e;

ij> execute pl;

1 row i nserted/ updat ed/ del et ed

-- Derby executes it without reconpiling

ij> CREATE INDEX i1 ON nytabl e(nycol);

0 rows inserted/ updated/ del et ed

-- pl is tenporarily invalidated because of new i ndex
ij> execute pl;

26

Derby Reference Manual

1 row i nserted/ updat ed/ del et ed

Derby automatically reconpiles pl and executes it
i j> DROP TABLE nyt abl e;

0 rows inserted/ updated/del eted

Derby permits you to drop table

because result set of pl is closed

however, the statement pl is tenporarily invalidated
ij> CREATE TABLE nytable (mycol |NT);

0 rows inserted/ updated/del et ed

ij> INSERT I NTO nytabl e VALUES (1), (2), (3);

3 rows inserted/ updat ed/ del et ed

ij> execute pl;

1 row i nserted/ updat ed/ del et ed

Because pl is invalid, Derby tries to reconpile it
bef ore executi ng.

It is successful and executes.

i j> DROP TABLE nyt abl e;

0 rows inserted/ updated/del eted

statenent pl is now invalid,

and this time the attenpt to reconpile it

upon execution will fail

ij> execute pl;

ERROR 42X05: Tabl e/ Vi ew ' MYTABLE' does not exi st.

ALTER TABLE statement
The ALTER TABLE statement modifies a table.
The ALTER TABLE statement allows you to:

Add a column to a table
Add a constraint to a table
Drop a column from a table
Drop an existing constraint from a table
Increase the width of a BLOB, CLOB, VARCHAR, or VARCHAR FOR BIT DATA
column
Override row-level locking for the table (or drop the override)
Change an identity column in any of the following ways:
» Change the increment value and start value of the identity column
« Change the generation condition from ALWAYS to DEFAULT BY behavior or
vice-versa
« Change the overflow handling from CYCLE to NO CYCLE behavior or
vice-versa
Change the nullability constraint for a column
Change the default value for a column

Syntax

ALTER TABLE t abl eNane

{

}

ADD COLUWN col umbDefinition |
ADD CONSTRAI NT cl ause |
DROP [COLUW] col ummNanme [CASCADE | RESTRICT] |
DROP { PRI MARY KEY |
FOREI GN KEY constrai nt Nane |
UNI QUE constrai nt Nanme |
CHECK constrai nt Nanme |
CONSTRAI NT constrai nt Nane } |
ALTER [COLUW] col umAl teration |
LOCKSI ZE { ROW | TABLE }

columnAlteration

col utmmNanme SET DATA TYPE BLOB(i nt eger

)

27

Derby Reference Manual

I
col uimNane SET DATA TYPE CLOB(i nteger

)

I
col ummNanme SET DATA TYPE VARCHAR(i nteger

)

I
col uimName SET DATA TYPE VARCHAR(i nt eger

) FOR BI T DATA

I
col ummNane SET | NCREMENT BY i nt eger Const ant |

col utmName RESTART W TH i nt eger Const ant |
col utmNanme SET GENERATED { ALWAYS | BY
DEFAULT }

I
colutmNanme { SET | DROP } NOT NULL

I
columNanme [NOT] NULL

I
columName [WTH | SET] DEFAULT def aul t Val ue |

col umName SET [NO] CYCLE

I
col uimNane DROP DEFAULT

In the columnAlteration, SET INCREMENT BY integerConstant specifies the interval
between consecutive values of the identity column. The next value to be generated for
the identity column will be determined from the last assigned value with the increment
applied. The column must already be defined with the IDENTITY attribute.

RESTART WITH integerConstant specifies the next value to be generated for the
identity column. RESTART WITH is useful for a table that has an identity column that
was defined as GENERATED BY DEFAULT and that has a unique key defined on that
identity column. Because GENERATED BY DEFAULT allows both manual inserts and
system generated values, it is possible that manually inserted values can conflict with
system generated values. To work around such conflicts, use the RESTART WITH
syntax to specify the next value that will be generated for the identity column. Consider
the following example, which involves a combination of automatically generated data and
manually inserted data:

CREATE TABLE tauto(i | NT GENERATED BY DEFAULT AS | DENTITY, k | NT)
CREATE UNI QUE | NDEX tautolnd ON tauto(i)
I NSERT | NTO tauto(k) values 1,2

The system will automatically generate values for the identity column. But now you need
to manually insert some data into the identity column:

I NSERT | NTO tauto VALUES (3, 3)
I NSERT | NTO tauto VALUES (4, 4)
I NSERT | NTO tauto VALUES (5, 5)

The identity column has used values 1 through 5 at this point. If you now want the
system to generate a value, the system will generate a 3, which will result in a unique
key exception because the value 3 has already been manually inserted. To compensate
for the manual inserts, issue an ALTER TABLE statement for the identity column with
RESTART WITH 6:

ALTER TABLE tauto ALTER COLUMN i RESTART W TH 6

SET GENERATED ALWAYS causes Derby to not accept an overriding value for an
identity column when a row is inserted or updated. SET GENERATED BY DEFAULT
causes Derby to permit these overrides.

The CYCLE clause controls what happens when the identity column exhausts its range
and wraps around (CYCLE) or throws an exception (NO CYCLE).

28

Derby Reference Manual

ALTER TABLE does not affect any view that references the table being altered. This
includes views that have an ™" in their SELECT list. You must drop and re-create those
views if you wish them to return the new columns.

Derby raises an error if you try to change the DataType of a generated column to a type
which is not assignable from the type of the generationClause. Derby also raises an error
if you try to add a DEFAULT clause to a generated column.

Adding columns

The syntax for the columnDefinition for a new column is the same as for a column in a
CREATE TABLE statement. This syntax allows a column constraint to be placed on the
new column within the ALTER TABLE ADD COLUMN statement. However, a column
with a NOT NULL constraint can be added to an existing table if you give a default value;
otherwise, an exception is thrown when the ALTER TABLE statement is executed.

Just as in CREATE TABLE, if the column definition includes a primary key constraint,
the column cannot contain null values, so the NOT NULL attribute must also be specified
(SQLSTATE 42831).

Note: If a table has an UPDATE trigger without an explicit column list, adding a column
to that table in effect adds that column to the implicit update column list upon which the
trigger is defined, and all references to transition variables are invalidated so that they
pick up the new column.

If you add a generated column to a table, Derby computes the generated values for all
existing rows in the table.

ALTER TABLE ADD COLUMN adds the new column at the end of the table row. If you
need to change a column in a way not permitted by ALTER TABLE ALTER COLUMN (for
example, if you need to change its data type), the only way to do so is to drop the column
and add a new one, and this changes the ordering of the columns.

Adding constraints

ALTER TABLE ADD CONSTRAINT adds a table-level constraint to an existing table.
Any supported table-level constraint type can be added via ALTER TABLE. The following
limitations exist on adding a constraint to an existing table:

« When adding a foreign key or check constraint to an existing table, Derby checks
the table to make sure existing rows satisfy the constraint. If any row is invalid,
Derby throws a statement exception and the constraint is not added.

« All columns included in a primary key must contain non null data and be unique.

ALTER TABLE ADD UNIQUE or PRIMARY KEY provide a shorthand method of
defining a primary key composed of a single column. If PRIMARY KEY is specified
in the definition of column C, the effect is the same as if the PRIMARY KEY(C)
clause were specified as a separate clause. The column cannot contain null values,
so the NOT NULL attribute must also be specified.

For information on the syntax of constraints, see CONSTRAINT clause. Use the
syntax for table-level constraint when adding a constraint with the ADD TABLE ADD
CONSTRAINT syntax.

Dropping columns
ALTER TABLE DROP COLUMN allows you to drop a column from a table.
The keyword COLUMN is optional.

The keywords CASCADE and RESTRICT are also optional. If you specify neither
CASCADE nor RESTRICT, the default is CASCADE.

If you specify RESTRICT, then the column drop will be rejected if it would cause a
dependent schema object to become invalid.

29

Derby Reference Manual

If you specify CASCADE, then the column drop should additionally drop other schema
objects which have become invalid.

The schema objects which can cause a DROP COLUMN RESTRICT to be rejected
include: views, triggers, primary key constraints, foreign key constraints, unique key
constraints, check constraints, and column privileges. If one of these types of objects
depends on the column being dropped, DROP COLUMN RESTRICT will reject the
statement.

Derby also raises an error if you specify RESTRICT when you drop a column referenced
by the generationClause of a generated column. However, if you specify CASCADE, the
generated column is also dropped with CASCADE semantics.

You may not drop the last (only) column in a table.

CASCADE/RESTRICT doesn't consider whether the column being dropped is used in
any indexes. When a column is dropped, it is removed from any indexes which contain it.
If that column was the only column in the index, the entire index is dropped.

Dropping constraints

ALTER TABLE DROP CONSTRAINT drops a constraint on an existing table. To drop
an unnamed constraint, you must specify the generated constraint name stored in
SYS.SYSCONSTRAINTS as a delimited identifier.

Dropping a primary key, unique, or foreign key constraint drops the physical index that
enforces the constraint (also known as a backing index).

Modifying columns
The columnAlteration allows you to alter the named column in the following ways:
« Increasing the width of an existing VARCHAR or VARCHAR FOR BIT DATA
column. CHARACTER VARYING or CHAR VARYING can be used as synonyms for
the VARCHAR keyword.

To increase the width of a column of these types, specify the data type and new
size after the column name.

You are not allowed to decrease the width or to change the data type. You are not
allowed to increase the width of a column that is part of a primary or unique key
referenced by a foreign key constraint or that is part of a foreign key constraint.

« Specifying the interval between consecutive values of the identity column.

To set an interval between consecutive values of the identity column, specify
the integerConstant. You must previously define the column with the IDENTITY
attribute (SQLSTATE 42837). If there are existing rows in the table, the values in
the column for which the SET INCREMENT default was added do not change.

« Modifying the nullability constraint of a column.

You can add the NOT NULL constraint to an existing column. To do so there must
not be existing NULL values for the column in the table.

You can remove the NOT NULL constraint from an existing column. To do so the
column must not be used in a PRIMARY KEY constraint.

< Changing an identity column from GENERATED ALWAYS to GENERATED BY
DEFAULT behavior or vice-versa.

The SET GENERATED clause may only be applied to identity columns. It cannot be
used to convert a non-identity column into an identity column. This clause can be
useful if you need to preserve key values when bulk-loading a table from a snapshot
or exported dump.

« Changing an identity column from CYCLE to NO CYCLE behavior or vice-versa.

30

Derby Reference Manual

The CYCLE clause controls what happens when the identity column exhausts its
range and wraps around (CYCLE) or throws an exception (NO CYCLE).
« Changing the default value for a column.

You can use DEFAULT default-value to change a column default. To disable a
previously set default, use DROP DEFAULT (alternatively, you can specify NULL as
the default-value).

Setting defaults

You can specify a default value for a new column. A default value is the value that is
inserted into a column if no other value is specified. If not explicitly specified, the default
value of a column is NULL. If you add a default to a new column, existing rows in the
table gain the default value in the new column.

For more information about defaults, see CREATE TABLE statement.
Changing the lock granularity for the table

The LOCKSIZE clause allows you to override row-level locking for the specific table,
if your system uses the default setting of row-level locking. (If your system is set for
table-level locking, you cannot change the locking granularity to row-level locking,
although Derby allows you to use the LOCKSIZE clause in such a situation without
throwing an exception.) To override row-level locking for the specific table, set locking
for the table to TABLE. If you created the table with table-level locking granularity, you
can change locking back to ROW with the LOCKSIZE clause in the ALTER TABLE
STATEMENT. For information about why this is sometimes useful, see Tuning Derby.

Examples

-- Add a new colum with a colum-I|evel constraint

-- to an existing table

-- An exception will be thrown if the table

-- contains any rows

-- since the newcol will be initialized to NULL

-- in all existing rows in the table

ALTER TABLE CI TIES ADD COLUMN REG ON VARCHAR(26)
CONSTRAI NT NEW _CONSTRAI NT CHECK (REG ON |'S NOT NULL);

-- Add a new uni que constraint to an existing table

-- An exception will be thrown if duplicate keys are found
ALTER TABLE SAMP. DEPARTMENT

ADD CONSTRAI NT NEW_UNI QUE UNI QUE (DEPTNO) ;

-- add a new foreign key constraint to the

-- Cities table. Each rowin Cties is checked

-- to nake sure it satisfied the constraints.

-- if any rows don't satisfy the constraint, the

-- constraint is not added

ALTER TABLE CI TI ES ADD CONSTRAI NT COUNTRY_FK

Forei gn Key (COUNTRY) REFERENCES COUNTRI ES (COUNTRY);

-- Add a primary key constraint to a table

-- First, create a new table

CREATE TABLE ACTIVITIES (CITY_I D I NT NOT NULL,

SEASON CHAR(2), ACTIVITY VARCHAR(32) NOT NULL);

-- You will not be able to add this constraint if the

-- colums you are including in the primary key have

-- null data or duplicate val ues.

ALTER TABLE Activities ADD PRI MARY KEY (city_id, activity);

-- Drop the city_id colum if there are no dependent objects:
ALTER TABLE Cities DROP COLUW city_i d RESTRI CT;

-- Drop the city_id columm, also dropping all dependent objects:
ALTER TABLE Cities DROP COLUW city_id CASCADE;

31

Derby Reference Manual
-- Drop a primary key constraint fromthe CITIES table

ALTER TABLE Cities DROP CONSTRAINT Cities_PK;

-- Drop a foreign key constraint fromthe CITIES table

ALTER TABLE Citi es DROP CONSTRAI NT COUNTRI ES_FK;

-- add a DEPTNO colum with a default value of 1

ALTER TABLE SAMP. EMP_ACT ADD COLUWN DEPTNO | NT DEFAULT 1;

-- increase the width of a VARCHAR col um

ALTER TABLE SAMP. EMP_PHOTO ALTER PHOTO FORMAT SET DATA TYPE VARCHAR(30);
-- change the lock granularity of a table

ALTER TABLE SAMP. SALES LOCKSI ZE TABLE;

-- Rermove the NOT NULL constraint fromthe MANAGER col um
ALTER TABLE Enpl oyees ALTER COLUWN Manager NULL;
-- Add the NOT NULL constraint to the SSN col umm
ALTER TABLE Enpl oyees ALTER COLUWN ssn NOT NULL;

-- Change the default value for the SALARY col um
ALTER TABLE Enpl oyees ALTER COLUWN Sal ary DEFAULT 1000. 0
ALTER TABLE Enpl oyees ALTER COLUWN Sal ary DROP DEFAULT

-- Enabl e CYCLE behavi or for the nessage_id col um
ALTER TABLE nessages ALTER COLUWN nessage_id SET CYCLE

-- Bulk load a table by tenporarily changi ng a GENERATED ALWAYS identity
col um

-- into a GENERATED BY default col um.

-- After loading the table, reset the identity colum to be GENERATED
ALVAYS

-- and nove its sequence nunber forward past the last inserted key.

ALTER TABLE target Tabl e ALTER COLUW keyCol SET GENERATED BY DEFAULT;

I NSERT | NTO t ar get Tabl e SELECT * FROM sour ceTabl e;

ALTER TABLE target Tabl e ALTER COLUWN keyCol SET GENERATED ALWAYS;

ALTER TABLE t arget Tabl e ALTER COLUWN keyCol RESTART W TH 1234567,

Results

An ALTER TABLE statement causes all statements that are dependent on the table
being altered to be recompiled before their next execution. ALTER TABLE is not allowed
if there are any open cursors that reference the table being altered.

CALL (PROCEDURE) statement

The CALL (PROCEDURE) statement invokes a procedure. A call to a procedure does
not return any value.

When a procedure with definer's rights is called, the current default schema is set to the
eponymously named schema of the definer. For example, if the defining user is called
OWNER, the default schema will also be set to OWNER. The definer's rights include
the right to set the current role to a role for which the definer has privileges. When the
procedure is first invoked, no role is set; even if the invoker has set a current role, the
procedure running with definer's rights has no current role set initially.

When a procedure with invoker's rights is called, the current default schema and current
role are unchanged initially within the procedure. Similarly, if SQL authorization mode is
not enabled, the current default schema is unchanged initially within the procedure.

When the call returns, any changes made inside the procedure to the default current
schema (and current role, if relevant) are reset (popped).

For information about definer's rights, see EXTERNAL SECURITY.
Syntax

CALL procedureNanme ([expression [, expression]*])

32

Derby Reference Manual
Example

CREATE PROCEDURE SALES. TOTAL_REVENUE(| N S_MONTH | NTEGER,
IN S_YEAR | NTEGER, OUT TOTAL DECI MAL(10, 2))
PARAMETER STYLE JAVA READS SQL DATA LANGUAGE JAVA EXTERNAL NAME
' com exanpl e. sal es. cal cul at eRevenueByMont h' ;

CALL SALES. TOTAL_REVENUE(?, ?, ?);

CREATE statements

Use the CREATE statements to create functions, indexes, procedures, roles, schemas,
synonyms, tables, triggers, and views.

CREATE DERBY AGGREGATE statement

The CREATE DERBY AGGREGATE statement creates a user-defined aggregate (UDA).
A UDA is a custom aggregate operator.

Syntax

CREATE DERBY AGCREGATE aggr egat eNane FOR val ueDat aType
[RETURNS returnbDataType

]
EXTERNAL NAMEsi ngl eQuot edStri ng

The aggregate name is composed of an optional schemaName and a SQLIdentifier. If
a schemaName is not provided, the current schema is the default schema. If a qualified
aggregate name is specified, the schema name cannot begin with SYS.

In general, UDAs live in the same namespace as one-argument user-defined functions
(see CREATE FUNCTION statement). A schema-qualified UDA name may not be the
schema-qualified name of a one-argument user-defined function.

An unqualified UDA name (that is, the UDA name without its schema name) may not be
the name of an aggregate defined in part 2 of the SQL Standard, section 10.9:

ANY

AVG

COLLECT
COUNT

EVERY

FUSI ON

| NTERSECTI ON

In addition, an unqualified UDA name may not be the name of any of the Derby built-in
functions which take one argument.

The valueDataType can be any valid nullable Derby data type except for XML, including
user-defined types.

The returnDataType can be any valid nullable Derby data type except for XML. If the
returnDataType is omitted, it defaults to be the same as valueDataType.

The singleQuotedString specified by the EXTERNAL NAME clause is the full name of
a Java class which implements the org.apache.derby.agg.Aggregator interface. That
contract is not checked until a statement is compiled which invokes the UDA.

33

Derby Reference Manual

The org.apache.derby.agg.Aggregator interface extends java.io.Serializable, so you
must make sure that all of the state of your UDA is serializable. A UDA may be serialized
to disk when it performs grouped aggregation over a large number of groups. That is,
intermediate results may be serialized to disk for a query like the following:

SELECT a, myAggregate(b) FROM nyTabl e GROUP BY a
The serialization will fail if the UDA contains non-serializable fields.

The owner of the schema where the UDA lives automatically gains the USAGE privilege
on the UDA and can grant this privilege to other users and roles. Only the database
owner and the owner of the UDA can grant these USAGE privileges. The USAGE
privilege cannot be revoked from the schema owner. See GRANT statement and
REVOKE statement for more information.

Examples

CREATE DERBY AGCGREGATE npde FOR | NT
EXTERNAL NAME ' com exanpl e. myapp. aggs. Mode' ;

CREATE DERBY AGGREGATE types. maxPrice FOR PRI CE
EXTERNAL NAME ' com exanpl e. myapp. types. Pri ceMaxer"' ;

CREATE DERBY AGGREGATE types. avgLength FOR VECTOR
RETURNS DOUBLE
EXTERNAL NAME ' com exanpl e. nyapp. types. Vect or Lengt h' ;

See "Programming user-defined aggregates" in the Derby Developer's Guide for more
details about creating and using user-defined aggregates.

CREATE FUNCTION statement

The CREATE FUNCTION statement creates a Java function, which you can then use in
an expression.

The function owner and the database owner automatically gain the EXECUTE privilege
on the function, and are able to grant this privilege to other users. The EXECUTE
privileges cannot be revoked from the function and database owners.

For details on how Derby matches procedures to Java methods, see Argument matching.
For information on how functions interact with deferrable constraints, see Deferrable
constraints.

Syntax

CREATE FUNCTI ON functionNanme ([functionParaneter
[, functionParameter]* [...]]) RETURNS returnDataType
[functionEl enent]*

An ellipsis (. . .) after the last parameter indicates that the Java method supports trailing
optional arguments, called varargs. The ellipsis indicates that the method may be invoked
with zero or more trailing values, all having the data type of the last argument.

functionParameter

[paraneterNane] dataType
A parameterName must be unique within a function.
The syntax of dataType is described in Data types.

Note: The data types BLOB, CLOB, LONG VARCHAR, LONG VARCHAR FOR BIT
DATA, and XML are not allowed as parameters in a CREATE FUNCTION statement.

returnDataType

34

Derby Reference Manual
tabl eType | dataType

The syntax of dataType is described in Data types.
tableType

TABLE(col umEl enent [, col umEl enent]*)

This is the return type of a table function. Currently, only Derby-style table functions are
supported. They are functions which return JDBC ResultSets. For more information, see
"Programming Derby-style table functions" in the Derby Developer's Guide.

At runtime, as values are read out of the user-supplied ResultSet, Derby coerces

those values to the data types declared in the CREATE FUNCTION statement.

This affects values typed as CHAR, VARCHAR, LONG VARCHAR, CHAR FOR

BIT DATA, VARCHAR FOR BIT DATA, LONG VARCHAR FOR BIT DATA, and
DECIMAL/NUMERIC. Values which are too long are truncated to the maximum length
declared in the CREATE FUNCTION statement. In addition, if a String value is returned
in the ResultSet for a column of CHAR type and the String is shorter than the declared
length of the CHAR column, Derby pads the end of the String with blanks in order to
stretch it out to the declared length.

columnElement

SQLI denti fi erdat aType
The syntax of dataType is described in Data types.

Note: XML is not allowed as the type of a column in the dataset returned by a table
function.

functionElement

{
LANGUAGE JAVA |

{ DETERMNISTIC | NOT DETERM NISTIC } |

EXTERNAL NAMEsi ngl eQuot edString |

PARAMETER STYLE { JAVA | DERBY_JDBC RESULT_SET | DERBY } |
EXTERNAL SECURI TY { DEFINER | TNVOKER } |

{ NO SQL | CONTAINS SQL | READS SQ. DATA } |

{ RETURNS NULL ON NULL I NPUT | CALLED ON NULL | NPUT }

}

The function elements may appear in any order, but each type of element can only
appear once. A function definition must contain these elements:

« LANGUAGE

« EXTERNAL NAME

« PARAMETER STYLE

LANGUAGE JAVA
The database manager will call the function as a public static method in a Java class.
DETERMINISTIC, NOT DETERMINISTIC

DETERMINISTIC declares that the function is deterministic, meaning that with the

same set of input values, it always computes the same result. The default is NOT
DETERMINISTIC. Derby cannot recognize whether an operation is actually deterministic,
S0 you must take care to specify this element correctly.

EXTERNAL NAME singleQuotedString

The singleQuotedString specified by the EXTERNAL NAME clause describes the Java
method to be called when the function is executed.

PARAMETER STYLE

35

Derby Reference Manual

JAVA
The function will use a parameter-passing convention that conforms to the
Java language and SQL Routines specification. INOUT and OUT parameters
will be passed as single entry arrays to facilitate returning values. Result sets
can be returned through additional parameters to the Java method of type
java.sql.ResultSet[] that are passed single entry arrays.

Derby does not support long column types (for example, LONG VARCHAR, BLOB,
and so on). An error will occur if you try to use one of these long column types.

DERBY_JDBC_RESULT_SET
The PARAMETER STYLE is DERBY_JDBC_RESULT_SET if and only if this is a
Derby-style table function, that is, a function which returns tableType and which is
mapped to a method which returns a JDBC ResultSet.

DERBY
The PARAMETER STYLE must be DERBY if and only if an ellipsis (. . .) appears at
the end of the argument list.

EXTERNAL SECURITY

If SQL authorization mode is enabled, a function runs by default with the privileges
specified for the user who invokes the function (invoker's rights). To specify that the
function should run with the privileges specified for the user who defines the function
(definer's rights), create the function with EXTERNAL SECURITY DEFINER. Those
privileges include the right to set the current role to a role for which the definer has
privileges. When the function is first invoked, no role is set; even if the invoker has set a
current role, the function running with definer's rights has no current role set initially.

See derby.database.sqlAuthorization for details about setting SQL authorization mode.

When a function with definer's rights is invoked, the current default schema is set to the
eponymously named schema of the definer. For example, if the defining user is called
OWNER, the default schema will also be set to OWNER.

When a function with invoker's rights is called, the current default schema and current
role are unchanged initially within the function. Similarly, if SQL authorization mode is not
enabled, the current default schema is unchanged initially within the function.

When the call returns, any changes made inside the function to the default current
schema (and current role, if relevant) are reset (popped).

If SQL authorization mode is not enabled, an attempt to create a function with
EXTERNAL SECURITY will result in an error.

NO SQL, CONTAINS SQL, READS SQL DATA
Indicates whether the function issues any SQL statements and, if so, what type.

CONTAINS SQL
Indicates that SQL statements that neither read nor modify SQL data can be
executed by the function. Statements that are not supported in any function return a
different error.

NO SQL
Indicates that the function cannot execute any SQL statements

READS SQL DATA
Indicates that some SQL statements that do not modify SQL data can be included
in the function. Statements that are not supported in any stored function return a
different error. This is the default value.

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
Specifies whether the function is called if any of the input arguments is null. The result is
the null value.

36

Derby Reference Manual

RETURNS NULL ON NULL INPUT
Specifies that the function is not invoked if any of the input arguments is null. The
result is the null value.

CALLED ON NULL INPUT
Specifies that the function is invoked if any or all input arguments are null. This
specification means that the function must be coded to test for null argument values.
The function can return a null or non-null value. This is the default setting.

Example of declaring a scalar function

CREATE FUNCTI ON TO_DEGREES

(RADI ANS DOUBLE)

RETURNS DOUBLE

PARAMVETER STYLE JAVA

NO SQL LANGUAGE JAVA

EXTERNAL NAME ' ava. | ang. Mat h. t oDegr ees'

Example of declaring a table function

CREATE FUNCTI ON PROPERTY_FI LE_READER
(FILENAVE VARCHAR(32672))
RETURNS TABLE

KEY_COL VARCHAR(10),
VALUE_COL VARCHAR(1000)

)
LANGUAGE JAVA
PARAMETER STYLE DERBY_JDBC RESULT_SET
NO SQL
EXTERNAL NAME 'vtis. exanpl e. PropertyFil eVTl. propertyFil eVTl'

Example of declaring a function that takes varargs

CREATE FUNCTI ON maxi num
(alINT...)

RETURNS | NT

LANGUAGE JAVA

PARAMETER STYLE DERBY

NO SQL

EXTERNAL NAME ' | nt Functi ons. maxi num

CREATE INDEX statement

A CREATE INDEX statement creates an index on a table. Indexes can be on one or
more columns in the table.

Syntax

CREATE [UNI QUE] | NDEX i ndexNane
ON t abl eName (sinpl eCol umNane [ASC | DESC]
[, sinpleColumNanme [ASC| DESC]]*)

The maximum number of columns for an index key in Derby is 16.
An index name cannot exceed 128 characters.

A column must not be named more than once in a single CREATE INDEX statement.
Different indexes can name the same column, however.

Derby does not support indexing on columns with user-defined data types or with the
data types LONG VARCHAR, BLOB, CLOB, or XML.

Derby can use indexes to improve the performance of data manipulation statements (see
Tuning Derby). In addition, UNIQUE indexes provide a form of data integrity checking.

37

Derby Reference Manual

Index names are unique within a schema. (Some database systems allow different tables
in a single schema to have indexes of the same name, but Derby does not.) Both index
and table are assumed to be in the same schema if a schema name is specified for one
of the names, but not the other. If schema names are specified for both index and table,
an exception will be thrown if the schema names are not the same. If no schema name is
specified for either table or index, the current schema is used.

By default, Derby uses the ascending order of each column to create the index.
Specifying ASC after the column name does not alter the default behavior. The DESC
keyword after the column name causes Derby to use descending order for the column
to create the index. Using the descending order for a column can help improve the
performance of queries that require the results in mixed sort order or descending order
and for queries that select the minimum or maximum value of an indexed column.

Sorting and ordering of character data is controlled by the collation specified for a
database when it is created, as well as the locale of the database. For details, see
collation=collation attribute and territory=Il_CC attribute, as well as the sections "Creating
a database with locale-based collation”, "Creating a case-insensitive database", and
"Character-based collation in Derby" in the Derby Developer's Guide.

If a qualified index name is specified, the schema name cannot begin with SYS.
Indexes and constraints

Unique, primary key, and foreign key constraints generate indexes that enforce or "back"
the constraint (and are thus sometimes called backing indexes). If a column or set

of columns has a UNIQUE or PRIMARY KEY constraint on it, you can not create an
index on those columns. Derby has already created it for you with a system-generated
name. System-generated names for indexes that back up constraints are easy to find

by querying the system tables if you name your constraint. Adding a PRIMARY KEY or
UNIQUE constraint when an existing UNIQUE index exists on the same set of columns
will result in two physical indexes on the table for the same set of columns. One index is
the original UNIQUE index and one is the backing index for the new constraint.

To find out the name of the index that backs a constraint called FLIGHTS_PK:

SELECT CONGLOVERATENAME FROM SYS. SYSCONGLOMERATES,
SYS. SYSCONSTRAI NTS WHERE

SYS. SYSCONGLOVERATES. TABLEI D = SYSCONSTRAI NTS. TABLEI D
AND CONSTRAI NTNAME = ' FLI GHTS_PK'

CREATE | NDEX Ori gl ndex ON Flights(orig_airport);
-- nmoney is usually ordered fromgreatest to | east,
-- so create the index using the descendi ng order
CREATE | NDEX PAY_DESC ON SAMP. EMPLOYEE (SALARY);
-- use a larger page size for the index
cal |
SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(' der by. st or age. pageSi ze' , ' 8192');
CREATE | NDEX | XSALE ON SAMP. SALES (SALES) ;
cal |
SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(' der by. st or age. pageSi ze' , NULL) ;

Page size and key size

Note: The size of the key columns in an index must be equal to or smaller than half the
page size. If the length of the key columns in an existing row in a table is larger than
half the page size of the index, creating an index on those key columns for the table

will fail. This error only occurs when creating an index if an existing row in the table fails
the criteria. After an index is created, inserts may fail if the size of their associated key
exceeds the criteria.

Statement dependency system

38

Derby Reference Manual

Prepared statements that involve SELECT, INSERT, UPDATE, UPDATE WHERE
CURRENT, DELETE, and DELETE WHERE CURRENT on the table referenced by the
CREATE INDEX statement are invalidated when the index is created. Open cursors on
the table are not affected.

CREATE PROCEDURE statement

The CREATE PROCEDURE statement creates a Java stored procedure, which you can
then call using the CALL PROCEDURE statement.

The procedure owner and the database owner automatically gain the EXECUTE privilege
on the procedure, and are able to grant this privilege to other users. The EXECUTE
privileges cannot be revoked from the procedure and database owners.

For details on how Derby matches procedures to Java methods, see Argument matching.
For information on how stored procedures interact with deferrable constraints, see
Deferrable constraints.

Syntax

CREATE PROCEDURE procedureNane ([procedurePar anet er
[, procedureParaneter]* [...]])
[procedureEl enent]*

An ellipsis (. . .) after the last parameter indicates that the Java method supports trailing
optional arguments, called varargs. The ellipsis indicates that the method may be invoked
with zero or more trailing values, all having the data type of the last argument.

procedureParameter

[{ IN|] OQUT | INOQUT }] [paraneterNanme] dataType

The default value for a parameter is IN. A parameterName must be unique within a
procedure.

The syntax of dataType is described in Data types.

Note: The data types BLOB, CLOB, LONG VARCHAR, LONG VARCHAR FOR BIT
DATA, and XML are not allowed as parameters in a CREATE PROCEDURE statement.

procedureElement

[DYNAM C] RESULT SETS i nteger |

LANGUAGE JAVA |

{ DETERM NISTIC | NOT DETERM NI STIC } |

EXTERNAL NAMEsi ngl eQuot edString |

PARAMVETER STYLE { JAVA | DERBY } |

EXTERNAL SECURI TY { DEFINER | | NVOKER } |

{ NOSQL | MODIFIES SQL DATA | CONTAINS SQL | READS SQL DATA }

The procedure elements may appear in any order, but each type of element can only
appear once. A procedure definition must contain these elements:

« LANGUAGE

« EXTERNAL NAME

« PARAMETER STYLE

DYNAMIC RESULT SETS integer

Indicates the estimated upper bound of returned result sets for the procedure. Default is
no (zero) dynamic result sets. If the procedure takes varargs, the value must be zero.

LANGUAGE JAVA

The database manager will call the procedure as a public static method in a Java class.

39

Derby Reference Manual
DETERMINISTIC, NOT DETERMINISTIC

DETERMINISTIC declares that the procedure is deterministic, meaning that with the
same set of input values, it always computes the same result. The default is NOT
DETERMINISTIC. Derby cannot recognize whether an operation is actually deterministic,
S0 you must take care to specify this element correctly.

EXTERNAL NAME singleQuotedString

The singleQuotedString specified by the EXTERNAL NAME clause describes the Java
method to be called when the procedure is executed.

PARAMETER STYLE

JAVA
The procedure will use a parameter-passing convention that conforms to the Java
language and SQL Routines specification. INOUT and OUT parameters will be
passed as single entry arrays to facilitate returning values. Result sets are returned
through additional parameters to the Java method of type java.sqgl.ResultSet[] that are
passed single entry arrays.

Derby does not support long column types (for example, LONG VARCHAR, BLOB,
and so on). An error will occur if you try to use one of these long column types.

DERBY
The PARAMETER STYLE must be DERBY if and only if an ellipsis (. . .) appears at
the end of the argument list.

EXTERNAL SECURITY

If SQL authorization mode is enabled, a procedure runs by default with the privileges
specified for the user who invokes the procedure (invoker's rights). To specify that the
procedure should run with the privileges specified for the user who defines the procedure
(definer's rights), create the procedure with EXTERNAL SECURITY DEFINER. Those
privileges include the right to set the current role to a role for which the definer has
privileges. When the procedure is first invoked, no role is set; even if the invoker has set
a current role, the procedure running with definer's rights has no current role set initially.

See derby.database.sqlAuthorization for details about setting SQL authorization mode.

When a procedure with definer's rights is called, the current default schema is set to the
eponymously named schema of the definer. For example, if the defining user is called
OWNER, the default schema will also be set to OWNER.

When a procedure with invoker's rights is called, the current default schema and current
role are unchanged initially within the procedure. Similarly, if SQL authorization mode is
not enabled, the current default schema is unchanged initially within the procedure.

When the call returns, any changes made inside the procedure to the default current
schema (and current role, if relevant) are reset (popped).

If SQL authorization mode is not enabled, an attempt to create a procedure with
EXTERNAL SECURITY will result in an error.

NO SQL, CONTAINS SQL, READS SQL DATA, MODIFIES SQL DATA

Indicates whether the stored procedure issues any SQL statements and, if so, what type.
MODIFIES SQL DATA is the default value. A stored procedure which issues a statement
which does not conform to the declared SQL statement level will cause Derby to throw an
exception.

NO SQL
Indicates that the stored procedure cannot execute any SQL statements
CONTAINS SQL

40

Derby Reference Manual

Indicates that SQL statements that neither read nor modify SQL data can be
executed by the stored procedure.

READS SQL DATA
Indicates that SQL statements that do not modify SQL data (for example, SELECT
statements) can be included in the stored procedure.

MODIFIES SQL DATA
Indicates that the stored procedure can execute any SQL statement.

Examples

CREATE PROCEDURE SALES. TOTAL_REVENUE(I N S_MONTH | NTEGER,

IN S_YEAR | NTEGER, OUT TOTAL DECI MAL(10, 2))

PARAMETER STYLE JAVA READS SQL DATA LANGUAGE JAVA EXTERNAL NAME
' com exanpl e. sal es. cal cul at eRevenueByMont h'

CREATE PROCEDURE VARARGPRCOC

(INalINT, INb INT, INc BIGNT ...)
LANGUAGE JAVA

PARAMETER STYLE DERBY

READS SQL DATA

EXTERNAL NAME ' Procs. varar gProc'

CREATE ROLE statement

The CREATE ROLE statement creates an SQL role. Roles are useful for administering
privileges when a database has many users.

Only the database owner can create a role.
For more information on roles, see "Using SQL roles" in the Derby Security Guide.

Syntax

CREATE ROLE r ol eNane

Before you issue a CREATE ROLE statement, verify that the
derby.database.sqlAuthorization property is set to TRUE. The
derby.database.sqlAuthorization property enables SQL authorization mode.

You cannot create a role name if there is a user by that name. An attempt to create a role
name that conflicts with an existing user name raises the SQLException X0Y68.

If user names are not controlled by the database owner (or administrator), it may be a
good idea to use a haming convention for roles to reduce the possibility of collision with
user names.

Derby tries to avoid name collision between user names and role names, but this is not
always possible, because Derby has a pluggable authorization architecture. For example,
an externally defined user may exist who has never yet connected to the database,
created any schema objects, or been granted any privileges. If Derby knows about a user
name, it will forbid creating a role with that name. Correspondingly, a user who has the
same name as a role will not be allowed to connect. Derby built-in users are checked for
collision when a role is created.

A role name cannot start with the prefix SYS (after case normalization). The purpose of
this restriction is to reserve a hame space for system-defined roles at a later point. Use of
the prefix SYS raises the SQLException 4293A.

You cannot create a role with the name PUBLI C (after case normalization). PUBLI Cis
a reserved authorization identifier. An attempt to create a role with the name PUBLI C
raises SQLException 4251B.

Example of creating arole

41

Derby Reference Manual
CREATE ROLE purchases_reader;

Examples of invalid role names

CREATE RCLE publi c; -- throws SQ.Exception;
CREATE RCOLE "PUBLIC'; -- throws SQLExcepti on;
CREATE ROLE sysrole; -- throws SQLExcepti on;

Example of creating a role using a naming convention

The following example uses the convention of giving every role name the suffix _rol e.

CREATE ROLE purchases_reader _rol g;
CREATE SCHEMA statement

The CREATE SCHEMA statement creates a schema, which is a way to logically group
objects in a single collection and to provide a unique namespace for objects.

Syntax

CREATE SCHEMA

{
[schemaNane AUTHORI ZATI ON user Name] |

[schemaNane] |
[AUTHORI ZATI ON user Nane |

}

A schema name cannot exceed 128 characters. Schema names must be unique within
the database.

A schema name cannot start with the prefix SYS (after case normalization). Use of the
prefix SYS raises a SQLException.

The CREATE SCHEMA statement is subject to access control when the
derby.database.sqlAuthorization property is set to t r ue for the database or system. Only
the database owner can create a schema with a name different from the current user
name, and only the the database owner can specify

AUTHORI ZATI ON user Nane
with a user name other than the current user name.

Note: Although the SQL standard allows you to specify any authorizationldentifier as an
AUTHORIZATION argument, Derby allows you to specify only a user, not a role.

CREATE SCHEMA examples
To create a schema for airline-related tables and give the authorization ID ani t a access
to all of the objects that use the schema, use the following syntax:

CREATE SCHEMA FLI GHTS AUTHORI ZATION anita
To create a schema employee-related tables, use the following syntax:

CREATE SCHEMVA EMP

To create a schema that uses the same name as the authorization ID t akum , use the
following syntax:

CREATE SCHEMA AUTHORI ZATI ON t akumi

To create a table called avai | abi | ity inthe EMP and FLI GHTS schemas, use the
following syntax:

CREATE TABLE FLI GHTS. AVAI LABI LI TY

(FLI GHT_I D CHAR(6) NOT NULL, SEGVENT_NUMBER | NT NOT NULL,
FLI GHT_DATE DATE NOT NULL, ECONOWY_SEATS TAKEN | NT,

42

Derby Reference Manual

BUSI NESS_SEATS_TAKEN | NT, FI RSTCLASS_SEATS_TAKEN | NT,
CONSTRAI NT FLT_AVAI L_PK
PRI MARY KEY (FLI GHT_I D, SEGVENT_NUMBER, FLI GHT_DATE))

CREATE TABLE EMP. AVAI LABI LI TY
(HOTEL_I D I NT NOT NULL, BOOKI NG DATE DATE NOT NULL, ROOMVS_TAKEN | NT,
CONSTRAI NT HOTELAVAI L_PK PRI MARY KEY (HOTEL_|I D, BOOKI NG DATE))

CREATE SEQUENCE statement

The CREATE SEQUENCE statement creates a sequence generator, which is a
mechanism for generating exact numeric values, one at a time.

The owner of the schema where the sequence generator lives automatically gains the
USAGE privilege on the sequence generator, and can grant this privilege to other users
and roles. Only the database owner and the owner of the sequence generator can grant
these USAGE privileges. The USAGE privilege cannot be revoked from the schema
owner. See GRANT statement and REVOKE statement for more information.

Syntax

CREATE SEQUENCE sequenceNane [sequenceEl enent]*

The sequence name is composed of an optional schemaName and a SQLIdentifier. If
a schemaName is not provided, the current schema is the default schema. If a qualified
sequence name is specified, the schema name cannot begin with SYS.

sequenceElement

AS dat aType

| START W TH si gnedl nt eger

| | NCREMENT BY si gnedl nt eger

| MAXVALUE signedl nteger | NO MAXVALUE
| M NVALUE si gnedl nteger | NO M NVALUE
| CYCLE | NO CYCLE

}

If specified, the dataType must be an integer type (SMALLINT, INT, or BIGINT). If not
specified, the default data type is INT.

If specified, the INCREMENT value is a non-zero number which fits in a dataType value.
If not specified, the INCREMENT defaults to 1. INCREMENT is the step by which the
sequence generator advances. If INCREMENT is positive, the sequence numbers get
larger over time. If INCREMENT is negative, the sequence numbers get smaller.

If specified, MINVALUE must be an integer which fits in a dataType value. If MINVALUE
is not specified, or if NO MINVALUE is specified, MINVALUE defaults to the smallest
negative number which fits in a dataType value.

If specified, MAXVALUE may not be greater than the largest positive integer that fits
in a dataType value. If MAXVALUE is not specified, or if NO MAXVALUE is specified,
MAXVALUE defaults to the largest positive integer which fits in a dataType value.
MAXVALUE must be greater than MINVALUE.

The START WITH clause specifies the initial value of the sequence generator. This
value must fall between MINVALUE and MAXVALUE. If the START WITH clause is not
specified, the initial value defaults to be:

* MINVALUE if INCREMENT is positive
* MAXVALUE if INCREMENT is negative

The CYCLE clause controls what happens when the sequence generator exhausts its
range and wraps around. If CYCLE is specified, the wraparound behavior is to reinitialize
the sequence generator to its MINIMUM or MAXIMUM value. If NO CYCLE is specified,

43

Derby Reference Manual
Derby throws an exception when the generator wraps around. The default behavior is
NO CYCLE. Note that cycling restarts from the minimum or maximum value, not from the
start value.

To retrieve the next value from a sequence generator, use a NEXT VALUE FOR
expression.

Performance

To boost performance and concurrency, Derby preallocates ranges of upcoming values
for sequences. The lengths of these ranges can be configured by adjusting the value of
the derby.language.sequence.preallocator property.

Examples

The following statement creates a sequence generator of type INT, with a start value

of -2147483648 (the smallest INT value). The value increases by 1, and the last legal
value is the largest possible INT. If NEXT VALUE FOR is invoked on the generator again,
Derby throws an exception.

CREATE SEQUENCE order _id;

The following statement creates a sequence of type BIGINT with a start value of
3,000,000,000. The value increases by 1, and the last legal value is the largest possible
BIGINT. If NEXT VALUE FOR is invoked on the generator again, Derby throws an
exception.

CREATE SEQUENCE order _entry_id
AS Bl G NT
START W TH 3000000000;

CREATE SYNONYM statement

The CREATE SYNONYM statement provides an alternate name for a table or a view that
is present in the same schema or another schema.

You can also create synonyms for other synonyms, resulting in nested synonyms. A
synonym can be used instead of the original qualified table or view name in SELECT,
INSERT, UPDATE, DELETE or LOCK TABLE statements. You can create a synonym for
a table or a view that doesn't exist, but the target table or view must be present before
the synonym can be used.

Synonyms share the same namespace as tables or views. You cannot create a synonym
with the same name as a table that already exists in the same schema. Similarly, you
cannot create a table or view with a name that matches a synonym already present.

A synonym can be defined for a table/view that does not exist when you create

the synonym. If the table or view doesn't exist, you will receive a warning message
(SQLSTATE 01522). The referenced object must be present when you use a synonym in
a DML statement.

You can create a nested synonym (a synonym for another synonym), but any attempt
to create a synonym that results in a circular reference will return an error message
(SQLSTATE 42916).

Synonyms cannot be defined in system schemas. All schemas starting with 'SYS' are
considered system schemas and are reserved by Derby.

A synonym cannot be defined on a temporary table. Attempting to define a synonym on a
temporary table will return an error message (SQLSTATE XCL51).

Syntax

CREATE SYNONYM synonynNanme FOR { vi ewNane | tabl eNane }

44

Derby Reference Manual

The synonymName in the statement represents the synonym name you are giving the
target table or view, while the viewName or tableName represents the original name of
the target table or view.

Example

CREATE SYNONYM SAMP. T1 FOR SAMP. TABLEW THL ONGNAME
CREATE TABLE statement

The CREATE TABLE statement creates a table. Tables contain columns and constraints,
rules to which data must conform.

Table-level constraints specify a column or columns. Columns have a data type and can
specify column constraints (column-level constraints).

The table owner and the database owner automatically gain the following privileges on
the table and are able to grant these privileges to other users:
¢ INSERT
e SELECT
REFERENCES
* TRIGGER
« UPDATE
These privileges cannot be revoked from the table and database owners.

For information about constraints, see CONSTRAINT clause.

You can specify a default value for a column. A default value is the value to be inserted
into a column if no other value is specified. If not explicitly specified, the default value of a
column is NULL. See Column default.

You can specify storage properties such as page size for a table by calling the
SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY system procedure.

If a qualified table name is specified, the schema name cannot begin with SYS.
Syntax

There are two different variants of the CREATE TABLE statement, depending on whether
you are specifying the column definitions and constraints, or whether you are modeling
the columns after the results of a query expression:

CREATE TABLE t abl eNane

{
({ columbDefinition | tabl eLevel Constraint }
[, { columDefinition | tablelLevel Constraint }] *)
I
[(sinpleColumNane [, sinpleColumNane | *)]
AS quer yExpr essi on
W TH NO DATA
}
Example

CREATE TABLE HOTELAVAI LABI LI TY

(HOTEL_I D I NT NOT NULL, BOCKI NG DATE DATE NOT NULL,
ROOVS_TAKEN | NT DEFAULT 0, PRI MARY KEY (HOTEL_I D, BOOKI NG DATE)) ;
-- the table-level primary key definition allows you to
-- include two colums in the primary key definition
PRI MARY KEY (hotel _id, booking_date))
-- assign an identity colum attribute to an | NTEGER
-- colum, and al so define a primary key constraint
-- on the colum
CREATE TABLE PECPLE
(PERSON_I D I NT NOT NULL GENERATED ALWAYS AS | DENTI TY
CONSTRAI NT PECPLE_PK PRI MARY KEY, PERSON VARCHAR(26));

45

Derby Reference Manual

-- assign an identity colum attribute to a SMALLINT

-- colum with an initial value of 5 and an increnent val ue

-- of 5 and with cycle option.

CREATE TABLE GROUPS

(GROUP_I D SMALLI NT NOT NULL GENERATED ALWAYS AS | DENTI TY

(START WTH 5, | NCREMENT BY 5, CYCLE), ADDRESS VARCHAR(100), PHONE
VARCHAR(15)) ;

Note: For more examples of CREATE TABLE statements using the various constraints,
see CONSTRAINT clause.

CREATE TABLE ... AS ...

With the alternate form of the CREATE TABLE statement, the column names and/or the
column data types can be specified by providing a query. The columns in the query result
are used as a model for creating the columns in the new table.

If no column names are specified for the new table, then all the columns in the result of
the query expression are used to create same-named columns in the new table, of the
corresponding data type(s). If one or more column names are specified for the new table,
then the same number of columns must be present in the result of the query expression;
the data types of those columns are used for the corresponding columns of the new
table.

The WITH NO DATA clause specifies that the data rows which result from evaluating

the query expression are not used; only the names and data types of the columns in the
guery result are used. The WITH NO DATA clause must be specified; in a future release,
Derby may be modified to allow the WITH DATA clause to be provided, which would
indicate that the results of the query expression should be inserted into the newly-created
table. In the current release, however, only the WITH NO DATA form of the statement is
accepted.

Example

-- create a new table using all the colums and data types

-- froman existing table:

CREATE TABLE T3 AS SELECT * FROM T1 W TH NO DATA;

-- create a new table, providing new nanmes for the colums, but
-- using the data types fromthe colums of an existing table:
CREATE TABLE T3 (A B,C D E) AS SELECT * FROM T1 W TH NO DATA;
-- create a new table, providing new nanes for the col ums,

-- using the data types fromthe indicated colums of an existing table:
CREATE TABLE T3 (A B,C) AS SELECT V,DP,| FROM T1 W TH NO DATA;
-- This exanple shows that the colums in the result of the

-- query expression may be unnaned expressions, but their data
-- types can still be used to provide the data types for the
-- correspondi ng named colums in the new y-created table:
CREATE TABLE T3 (X, Y) AS SELECT 2*1,2.0*F FROM T1 W TH NO DATA;

columnDefinition:

si npl eCol uimNane [dataType]
[columLevel Constraint]*
[[WTH] DEFAULT def aul t Const ant Expr essi on
| generat edCol unmSpec
| generationC ause

[columLevel Constraint]*

The syntax of dataType is described in Data types. The dataType can be omitted only
if you specify a generationClause. If you omit the dataType, the type of the generated
column is the type of the generationClause. If you specify both a dataType and a

generationClause, the type of the generationClause must be assignable to dataType.

The syntaxes of columnLevelConstraint and tableLevelConstraint are described in
CONSTRAINT clause.

46

Derby Reference Manual
Column default

For the definition of a default value, a defaultConstantExpression is an expression that
does not refer to any table. It can include constants, date-time special registers, current
schemas, users, roles, and null:

def aul t Const ant Expr essi on:
NULL
| CURRENT { SCHEMA | SQ.ID }
| USER | CURRENT_USER | SESSI ON USER | CURRENT_ROLE
| DATE
| TIME
| TI MESTAWP
| CURRENT DATE | CURRENT_DATE
| CURRENT TIME | CURRENT_TI ME
| CURRENT TI MESTAMP | CURRENT Tl MESTAMP
| literal

For details about Derby literal values, see Data types.

The values in a defaultConstantExpression must be compatible in type with the column,
but a defaultConstantExpression has the following additional type restrictions:

* If you specify USER, CURRENT_USER, SESSION_USER, or CURRENT_ROLE,
the column must be a character column whose length is at least 8.

* If you specify CURRENT SCHEMA or CURRENT SQLID, the column must be a
character column whose length is at least 128.

« If the column is an integer type, the default value must be an integer literal.

« If the column is a decimal type, the scale and precision of the default value must be
within those of the column.

generatedColumnSpec:

[GENERATED { ALWAYS | BY DEFAULT } AS | DENTITY
[(START WTH i nt eger Const ant

| | NCREMENT BY i nt eger Const ant

| [N CYCLE)]]

Identity column attributes
A table can have at most one identity column.

For SMALLINT, INT, and BIGINT columns with identity attributes, Derby automatically
assigns increasing integer values to the column. Identity column attributes behave like
other defaults in that when an insert statement does not specify a value for the column,
Derby automatically provides the value. However, the value is not a constant; Derby
automatically increments the default value at insertion time.

The IDENTITY keyword can only be specified if the data type associated with the column
is one of the following exact integer types.

¢ SMALLINT

o INT

* BIGINT

There are two kinds of identity columns in Derby: those which are GENERATED

ALWAY'S and those which are GENERATED BY DEFAULT.

GENERATED ALWAYS
An identity column that is GENERATED ALWAY'S will increment the default value
on every insertion and will store the incremented value into the column. Unlike other
defaults, you cannot insert a value directly into or update an identity column that
is GENERATED ALWAYS. Instead, either specify the DEFAULT keyword when
inserting into the identity column, or leave the identity column out of the insertion
column list altogether. For example:

a7

Derby Reference Manual

create table greetings

(i int generated always as identity, ch char(50));
insert into greetings values (DEFAULT, 'hello');
insert into greetings(ch) values ('bonjour');

Automatically generated values in a GENERATED ALWAYS identity column are
unique. Creating an identity column does not create an index on the column.
GENERATED BY DEFAULT

An identity column that is GENERATED BY DEFAULT will only increment and use
the default value on insertions when no explicit value is given. Unlike GENERATED
ALWAYS columns, you can specify a particular value in an insertion statement to be
used instead of the generated default value.

To use the generated default, either specify the DEFAULT keyword when inserting
into the identity column, or just leave the identity column out of the insertion column
list. To specify a value, included it in the insertion statement. For example:

create table greetings

(i int generated by default as identity, ch char(50));
-- specify value "1":

insert into greetings values (1, 'hi');

-- use generated default

insert into greetings values (DEFAULT, 'salut');

-- use generated default

insert into greetings(ch) values ('bonjour');

Note that unlike a GENERATED ALWAYS column, a GENERATED BY DEFAULT
column does not guarantee uniqueness. Thus, in the above example, the hi and
sal ut rows will both have an identity value of "1", because the generated column
starts at "1" and the user-specified value was also "1". To prevent duplication,
especially when loading or importing data, create the table using the START WITH
value which corresponds to the first identity value that the system should assign.
To check for this condition and disallow it, you can use a primary key or unique
constraint on the GENERATED BY DEFAULT identity column.

The CYCLE clause controls what happens when the identity column exhausts its range
and wraps around.
CYCLE

If CYCLE is specified, the wraparound behavior is to reinitialize the the value of
identity column to its minimum or maximum value.

NO CYCLE

If NO CYCLE is specified, or if no CYCLE option is specified at all, Derby throws an
exception when the generator wraps around. The default is NO CYCLE: an identity
column does not cycle. Note that cycling restarts from the minimum or maximum
value, not from the start value.

By default, the initial value of an identity column is 1, the amount of the increment is 1,
and does not cycle. You can specify non-default values for the initial value, the interval
amount and the cycle option when you define the column with the key words START
WITH, INCREMENT BY and CYCLE. And if you specify a negative number for the
increment value, Derbydecrements the value with each insert. If this value is positive,
Derby increments the value with each insert. A value of 0 raises a statement exception.

The maximum and minimum values allowed in identity columns are determined by

the data type of the column. Attempting to insert a value outside the range of values
supported by the data type raises an exception. The following table shows the supported
ranges.

Table 2. Maximum and minimum values for columns with generated column specs

48

Derby Reference Manual

Data Type Maximum Value Minimum Value
SMALLINT | 32767 -32768
(java.lang.Short. MAX_VALUE) (java.lang.Short.MIN_VALUE)
INT 2147483647 -2147483648
(java.lang.Integer.MAX_VALUE) (java.lang.Integer.MIN_VALUE)
BIGINT 9223372036854775807 -9223372036854775808
(java.lang.Long.MAX_VALUE) (java.lang.Long.MIN_VALUE)

Automatically generated values in an identity column are unique. Use a primary key or
unigue constraint on a column to guarantee uniqueness. Creating an identity column
does not create an index on the column.

The | DENTI TY_VAL_LOCAL function is a non-deterministic function that returns the most
recently assigned value for an identity column. See IDENTITY_VAL_LOCAL function for

more information.

Note: Specify the schema, table, and column name using the same case as those

names are stored in the system tables--that is, all upper case unless you used delimited
identifiers when creating those database objects.

Derby keeps track of the last increment value for a column in a cache. It also stores
the value of what the next increment value will be for the column on disk in the
AUTOINCREMENTVALUE column of the SYS.SYSCOLUMNS system table. Rolling

back a transaction does not undo this value, and thus rolled-back transactions can leave

"gaps" in the values automatically inserted into an identity column. Derby behaves this
way to avoid locking a row in SYS.SYSCOLUMNS for the duration of a transaction and
keeping concurrency high.

When an insert happens within a triggeredSQLStatement, the value inserted by the
triggeredSQLStatement into the identity column is available from Connectioninfo only
within the trigger code. The trigger code is also able to see the value inserted by the

statement that caused the trigger to fire. However, the statement that caused the trigger
to fire is not able to see the value inserted by the triggeredSQLStatement into the identity

column. Likewise, triggers can be nested (or recursive). An SQL statement can cause
trigger T1 to fire. T1 in turn executes an SQL statement that causes trigger T2 to fire.
If both T1 and T2 insert rows into a table that cause Derby to insert into an identity

column, trigger T1 cannot see the value caused by T2's insert, but T2 can see the value

caused by T1's insert. Each nesting level can see increment values generated by itself

and previous nesting levels, all the way to the top-level SQL statement that initiated the

recursive triggers. You can only have 16 levels of trigger recursion.

Example 1

create table greetings

(i int generated by default as identity (START WTH 2,

ch char (50));
-- specify value "1":
insert into greetings values (1, '"hi');
-- use generated default
insert into greetings val ues (DEFAULT,
-- use generated default
insert into greetings(ch) values ('bonjour');

Example 2 with cycle option

create tabl e greetings
(i int generated by default as identity (START WTH 2147483647,
I NCREMENT BY 1, CYCLE),

j int);

49

"salut');

| NCREMENT BY 1),

Derby Reference Manual

-- when values are inserted, the identity colum value restarts with
m ni mum val ue:
insert intot(b) values (1), (2), (3);

generationClause:

GENERATED ALWAYS AS (val ueExpression)

A valueExpression is an expression that resolves to a single value, with some limitations
that are described here. See SQL expressions for more information about expressions.

References

The generationClause may reference other non-generated columns in the table, but it
must not reference any generated column. The generationClause must not reference a
column in another table.

Functions

The generationClause may invoke user-coded functions, if the functions meet the
following requirements:

« The functions must not read or write SQL data.
» The functions must have been declared DETERMINISTIC.
« The functions must not invoke any of the following possibly non-deterministic
system functions:

« CURRENT_DATE

« CURRENT_TIME

¢« CURRENT_TIMESTAMP

« CURRENT_USER

« CURRENT_ROLE

« CURRENT SCHEMA

« CURRENT SQLID

+ SESSION_USER

Subqueries
The generationClause must not include subqueries.
Foreign keys

If the generated column is part of a foreign key that references another table, the
referential action must not specify SET NULL or SET DEFAULT, and the update rule
must not specify ON UPDATE CASCADE.

Example

CREATE TABLE enpl oyee

(
enpl oyeel D int,
nane var char(50),
casel nsensi ti veName GENERATED ALWAYS AS(UPPER(nane))

I
CREATE | NDEX casel nsensi ti veEnpl oyeeNane ON enpl oyee(casel nsensiti veNane
)

CREATE TRIGGER statement

The CREATE TRIGGER statement creates a trigger, which defines a set of actions that
are executed when a database event occurs on a specified table.

A database event is a delete, insert, or update operation. For example, if you define a
trigger for a delete on a particular table, the trigger's action occurs whenever someone
deletes a row or rows from the table.

50

Derby Reference Manual

Along with constraints, triggers can help enforce data integrity rules with actions such as
cascading deletes or updates. Triggers can also perform a variety of functions such as
issuing alerts, updating other tables, sending e-mail, and other useful actions.

You can define any number of triggers for a single table, including multiple triggers on the
same table for the same event.

You can create a trigger in any schema where you are the schema owner. To create a
trigger on a table that you do not own, you must be granted the TRIGGER privilege on
that table. The database owner can also create triggers on any table in any schema.

A trigger operates with the privileges of the owner of the trigger. See "Configuring
fine-grained user authorization" and "Privileges on views, triggers, constraints, and
generated columns" in the Derby Security Guide for detalils.

The trigger does not need to reside in the same schema as the table on which the trigger
is defined.

If a qualified trigger name is specified, the schema name cannot begin with SYS.

Syntax

CREATE TRI GCGER tri gger Nane

{ AFTER | NO CASCADE BEFORE }

{ INSERT | DELETE | UPDATE [OF columNane [, columNane]*] }
ON t abl eNare

[referencingd ause]

[FOR EACH { ROW| STATEMENT }] [MODE DB2SQL]

[WHEN (bool eanExpression)

]
triggeredSQLSt at enent

Before or after: when triggers fire
Triggers are defined as either Before or After triggers.

« Before triggers fire before the statement's changes are applied and before any
constraints have been applied. Before triggers can be either row or statement
triggers (see Statement versus row triggers).

* After triggers fire after all constraints have been satisfied and after the changes
have been applied to the target table. After triggers can be either row or statement
triggers (see Statement versus row triggers).

Insert, delete, or update: what causes the trigger to fire
A trigger is fired by one of the following database events, depending on how you define it
(see Syntax above):

¢ INSERT

« UPDATE

e DELETE

You can define any number of triggers for a given event on a given table. For update, you
can specify columns.

Referencing old and new values: the REFERENCING clause

Many triggeredSQLStatements need to refer to data that is currently being changed by
the database event that caused them to fire. The triggeredSQLStatement might need to
refer to the new (post-change or "after") values.

Derby provides you with a number of ways to refer to data that is currently being changed
by the database event that caused the trigger to fire. Changed data can be referred

to in the triggeredSQLStatement using transition variables or transition tables. The
REFERENCING clause allows you to provide a correlation name or alias for these
transition variables by specifying OLD/NEW AS correlationName .

For example, if you add the following clause to the trigger definition:

51

Derby Reference Manual
REFERENCI NG OLD AS DELETEDROW

you can then refer to this correlation name in the triggeredSQLStatement:

DELETE FROM Hot el Avai | ability WHERE hotel id = DELETEDROW hotel _id

The OLD and NEW transition variables map to a java.sgl.ResultSet with a single row.
Note: Only row triggers (see Statement versus row triggers) can use the transition
variables. INSERT row triggers cannot reference an OLD row. DELETE row triggers
cannot reference a NEW row.

For statement triggers, transition tables serve as a table identifier for the
triggeredSQLStatement or the trigger qualification. The REFERENCING clause allows
you to provide a correlation name or alias for these transition tables by specifying
OLD_TABLE/NEW_TABLE AS correlationName

For example:

REFERENCI NG OLD_TABLE AS Del et edHot el s

allows you to use that new identifier (DeletedHotels) in the triggeredSQLStatement:

DELETE FROM Hot el Avai |l ability WHERE hotel _id IN
(SELECT hotel _i d FROM Del et edHot el s)

The old and new transition tables map to a java.sql.ResultSet with cardinality equivalent
to the number of rows affected by the triggering event.

Note: Only statement triggers (see Statement versus row triggers) can use the transition
tables. INSERT statement triggers cannot reference an OLD table. DELETE statement
triggers cannot reference a NEW table.

The REFERENCING clause can designate only one new correlation or identifier and only
one old correlation or identifier. Row triggers cannot designate an identifier for a transition
table and statement triggers cannot designate a correlation for transition variables.

The transition tables or transition variables defined in the REFERENCING clause can be
referenced from the WHEN clause.

Statement versus row triggers
You have the option to specify whether a trigger is a statement trigger or a row trigger. If
it is not specified in the CREATE TRIGGER statement via FOR EACH clause, then the
trigger is a statement trigger by default.

 statement triggers

A statement trigger fires once per triggering event and regardless of whether any
rows are modified by the insert, update, or delete event.
* row triggers

A row trigger fires once for each row affected by the triggering event. If no rows are
affected, the trigger does not fire.
Note: An update that sets a column value to the value that it originally contained (for
example, UPDATE T SET C = C) causes a row trigger to fire, even though the value of
the column is the same as it was prior to the triggering event.

triggeredSQL Statement
The action defined by the trigger is called the triggeredSQLStatement (in Syntax above,
see the last line). It has the following limitations:
« It must not contain any dynamic parameters (?).
It must not create, alter, or drop the table upon which the trigger is defined.
* It must not add an index to or remove an index from the table on which the trigger is
defined.

52

Derby Reference Manual

« It must not add a trigger to or drop a trigger from the table upon which the trigger is
defined.

« It must not commit or roll back the current transaction or change the isolation level.

« It must not reference a table in the SESSION schema (such as a temporary table;
see DECLARE GLOBAL TEMPORARY TABLE statement).

» Before triggers cannot have INSERT, UPDATE or DELETE statements as their
action.

 Before triggers cannot call procedures that modify SQL data as their action.

« The NEW variable of a Before trigger cannot reference a generated column.

For more information on triggeredSQLStatements, see "Programming trigger actions" in
the Derby Developer's Guide.

Order of execution
When a database event occurs that fires a trigger, Derby performs actions in this order:
« |t fires No Cascade Before triggers.
« It performs constraint checking (primary key, unique key, foreign key, check).
« It performs the insert, update, or delete.
« |t fires After triggers.

When multiple triggers are defined for the same database event for the same table for
the same trigger time (before or after), triggers are fired in the order in which they were
created.

Examples

-- Statements and triggers:

CREATE TRI GGER t 1 NO CASCADE BEFORE UPDATE ON x
FOR EACH ROW MODE DB2SQL
val ues app.notifyEmail ('Jerry', 'Table x is about to be updated');

CREATE TRI GGER FLI GHTSDELETE
AFTER DELETE ON FLI GHTS
REFERENCI NG OLD_TABLE AS DELETEDFLI GHTS
FOR EACH STATEMENT
DELETE FROM FLI GHATAVAI LABI LI TY WVHERE FLIGHT_ID I N
(SELECT FLI GHT_I D FROM DELETEDFLI GHTS) ;

CREATE TRI GCER FLI GHTSDELETE3
AFTER DELETE ON FLI GHTS
REFERENCI NG OLD AS QLD
FOR EACH ROW
DELETE FROM FLI GHTAVAI LABI LI TY WHERE FLI GHT_I D = CLD. FLI GHT_I D;

Note: You can find more examples in the Derby Developer's Guide.
Trigger recursion
The maximum trigger recursion depth is 16.

Related information

Special system functions that return information about the current time or current user are
evaluated when the trigger fires, not when it is created. Such functions include:
CURRENT_DATE function

CURRENT _TIME function

CURRENT_TIMESTAMP function

CURRENT_USER function

SESSION_USER function

* USER function

referencingClause:

REFERENCI NG

53

Derby Reference Manual

{
{ OD| NEW} [ROW] [AS] correl ationNanme
[{ OOD| NEW} [ROW] [AS] correl ationNane]
I
{ OLD. TABLE | NEWTABLE } [AS] identifier
[{ OLD. TABLE | NEWTABLE } [AS] identifier]
}

Note: The OLD TABLE | NEW TABLE syntax is deprecated since it is not SQL
compliant and is intended for backward compatibility and DB2 compatibility.
WHEN clause:

The WHEN clause is an optional part of a CREATE TRIGGER statement.
Syntax

WHEN (bool eanExpression)

If a trigger has been created with a WHEN clause, and the trigger event takes place, the
triggeredSQLStatement will be executed only if the booleanExpression in the WHEN
clause evaluates to TRUE. If it evaluates to FALSE or NULL, the triggeredSQLStatement
will not be executed.

The transition tables or transition variables defined in the REFERENCING clause can be
referenced from the WHEN clause.

The restrictions listed for the triggeredSQLStatement in the CREATE TRIGGER
statement also apply to the WHEN clause.

Note: The use of a WHEN clause in a CREATE TRIGGER statement is valid only after
a database has been fully upgraded to Derby Release 10.11 or higher. (See "Upgrading
a database" in the Derby Developer's Guide for more information.) This clause has no
meaning in a database that is at Release 10.10 or lower.

Example

CREATE TRI GCER FLI GHTSUPDATE
AFTER UPDATE ON FLI GATS
REFERENCI NG OLD AS COLD NEW AS NEW
FOR EACH ROW
VWHEN (OLD. FLI GHT_I D <> NEW FLI GHT_I D)
UPDATE FLI GHTAVAI LABI LI TY
SET FLIGHT_ID = NEWFLI GHT_I D
WHERE FLIGHT_ID = OLD. FLIGHT_I D

CREATE TYPE statement

The CREATE TYPE statement creates a user-defined type (UDT). AUDT is a
serializable Java class whose instances are stored in columns.

The Java class, specified by the EXTERNAL NAME clause, must implement the
java.io.Serializable interface.

Syntax

CREATE TYPE t ypeNaneEXTERNAL NAMEsi ngl eQuot edStri ng
LANGUAGE JAVA

The type name is composed of an optional schemaName and a SQLIdentifier. If a
schemaName is not provided, the current schema is the default schema. If a qualified
type name is specified, the schema name cannot begin with SYS.

If the Java class specified by the EXTERNAL NAME clause does not implement
java.io.Serializable, or if it is not public and visible on the classpath, Derby raises an
exception when preparing statements which refer to the UDT.

54

Derby Reference Manual

A UDT cannot be cast explicitly to any other type, and no other type can be cast to a
UDT.

A UDT has no ordering. This means that you cannot compare and sort UDTs. You cannot
use them in expressions involving the <, =, >, IN, BETWEEN, and LIKE operators. You
cannot use UDTs in aggregates, DISTINCT expressions, and GROUP/ORDER BY
clauses. You cannot build indexes on them.

You can use subtypes in UDTs. That is, if you use the CREATE TYPE statement to bind
a class named C to a UDT, you can populate that UDT value with an instance of any
subclass of C.

Example

CREATE TYPE price
EXTERNAL NAME ' com exanpl e. types. Pri ce'
LANGUAGE JAVA

Using user-defined types

You can create tables and views with columns that have UDTs. For example:

CREATE TABLE order

order| D | NT GENERATED ALWAYS AS | DENTI TY,
custoner| D | NT REFERENCES cust omer(custonerlD),
total Price typeSchema. price

) ¢

Although UDTs have no natural order, you can use generated columns to provide useful
sort orders:

ALTER TABLE order
ADD COLUMN nor mal i zedVal ue DECI MAL(31, 5) GENERATED ALWAYS AS
(convert('EUR , TIMESTAMP('2005-01-01 09:00:00'), totalPrice));
CREATE | NDEX nornal i zedOrder Price ON order(normalizedVal ue);

You can use factory functions to construct UDTs. For example:

I NSERT | NTO order(custonerl D, total Price)
VALUES (12345,
makePrice('USD ,
CAST(9.99 AS DECI MAL(31, 5)),
TI MESTAMP(' 2009- 10-16 14:24:43')));

Once a UDT column has been populated, you can use it in other INSERT and UPDATE
statements. For example:

I NSERT | NTO backOrder SELECT * from order;

UPDATE order SET total Price = (SELECT todaysDi scount FROM di scount);
UPDATE order SET total Price = adjustForinflation(total Price);

Using functions, you can access fields inside UDTs in a SELECT statement:

SELECT get CurrencyCode(total Price) from order;

You can use JDBC API setObject() and getObject() methods to store and retrieve values
of UDTs. For example:

Pr epar edSt at ement ps = conn. prepar eSt at ement ("SELECT * from order");
Resul t Set rs = ps. execut eQuery();

while(rs.next())
{

i nt orderID = rs.getlnt(1);
i nt custonerID = rs.getInt(2);

55

Derby Reference Manual
Price totalPrice = (Price) rs.getject(3);

}
CREATE VIEW statement

The CREATE VIEW statement creates a view, which is a virtual table formed by a query.
A view is a dictionary object that you can use until you drop it. Views are not updatable.
If a qualified view name is specified, the schema name cannot begin with SYS.

A view operates with the privileges of the owner of the view. See "Configuring
fine-grained user authorization" and "Privileges on views, triggers, constraints, and
generated columns” in the Derby Security Guide for detalils.

The view owner automatically gains the SELECT privilege on the view. The SELECT
privilege cannot be revoked from the view owner. The database owner automatically
gains the SELECT privilege on the view and is able to grant this privilege to other users.
The SELECT privilege cannot be revoked from the database owner.

The view owner can only grant the SELECT privilege to other users if the view owner
also owns the underlying objects.

If the underlying objects that the view references are not owned by the view owner, the
view owner must be granted the appropriate privileges. For example, if the authorization
ID user 2 attempts to create a view called user 2. v2 that references table user 1.t 1
and function user 1. f _abs(), then user 2 must have the SELECT privilege on table
user 1.t 1 and the EXECUTE privilege on function user 1. f _abs().

The privilege to grant the SELECT privilege cannot be revoked. If a required privilege
on one of the underlying objects that the view references is revoked, then the view is
dropped.

Syntax

CREATE VI EW vi ewNane
[(sinpleColumNane [, sinpleColumNane]*)]
AS query [ORDER BY cl ause]
[result offset clause]
[fetch first clause]

A view definition can contain an optional view column list to explicitly name the columns
in the view. If there is no column list, the view inherits the column names from the
underlying query. All columns in a view must be uniquely named.

Examples

CREATE VI EW SAMP. V1 (COL_SUM COL_Dl FF)
AS SELECT COW + BONUS, COWM - BONUS
FROM SAMP. EMPLOYEE;

CREATE VI EW SAMP. VEMP_RES (RESUVMVE)
AS VALUES 'Delores M Quintana', 'Heather A N cholls', 'Bruce Adanson';

CREATE VI EW SAMP. PROJ_COVBO

(PRQINO, PRENDATE, PRSTAFF, MAJPRQJ)

AS SELECT PROINO, PRENDATE, PRSTAFF, MAJPRQJ
FROM SAMP. PRJECT UNI ON ALL

SELECT PROINO, EMSTDATE, EMPTI ME, EMPNO

FROM SAMP. EMP_ACT

WHERE EMPNO |'S NOT NULL;

Statement dependency system

View definitions are dependent on the tables and views referenced within the view
definition. DML (data manipulation language) statements that contain view references
depend on those views, as well as the objects in the view definitions that the views are

56

Derby Reference Manual

dependent on. Statements that reference the view depend on indexes the view uses;
which index a view uses can change from statement to statement based on how the
query is optimized. For example, given:

CREATE TABLE T1 (Cl DOUBLE PRECI Sl ON);

CREATE FUNCTI ON SI N (DATA DOUBLE)
RETURNS DOUBLE EXTERNAL NAME ' j ava.l ang. Mat h. sin’'
LANGUACE JAVA PARAMETER STYLE JAVA;

CREATE VIEW V1 (Cl1) AS SELECT SI N(Cl) FROM T1,
the following SELECT:

SELECT * FROM V1

is dependent on view V1, table T1, and external scalar function SIN.

DECLARE GLOBAL TEMPORARY TABLE statement

The DECLARE GLOBAL TEMPORARY TABLE statement defines a temporary table for
the current connection.

Temporary tables do not reside in the system catalogs and are not persistent. Temporary
tables exist only during the connection that declared them and cannot be referenced
outside of that connection. When the connection closes, the rows of the table are deleted,
and the in-memory description of the temporary table is dropped.

Temporary tables are useful when:
» The table structure is not known before using an application.
» Other users do not need the same table structure.
« Data in the temporary table is needed while using the application.
« The table can be declared and dropped without holding the locks on the system
catalog.

Syntax

DECLARE GLOBAL TEMPORARY TABLE t enpTabl eNane

{ columDefinition [, columDefinition]* }
[ON COWM T { DELETE | PRESERVE } ROV]
NOT LOGGED [ON ROLLBACK DELETE ROWS |

tempTableName

Names the temporary table. If a schemaName other than SESSION is specified, an
error will occur (SQLSTATE 428EK). If the schemaName is not specified, SESSION
is assigned. Multiple connections can define declared global temporary tables with the
same name because each connection has its own unique table descriptor for it.

Using SESSION as the schema name of a physical table will not cause an error, but is
discouraged. The SESSION schema name should be reserved for the temporary table
schema.

columnDefinition

See columnDefinition for CREATE TABLE for more information on columnDefinition.
DECLARE GLOBAL TEMPORARY TABLE does not allow generatedColumnSpec in the
columnDefinition.

Data type
Supported data types are:
¢ BIGINT

57

Derby Reference Manual

« CHAR
 DATE

» DECIMAL

» DOUBLE
 DOUBLE PRECISION
 FLOAT

* INTEGER

* NUMERIC

* REAL

* SMALLINT
* TIME
 TIMESTAMP
* VARCHAR

ON COMMIT

Specifies the action taken on the global temporary table when a COMMIT operation is
performed.

DELETE ROWS

All rows of the table will be deleted if no hold-able cursor is open on the table. This is
the default value for ON COMMIT. If you specify ON ROLLBACK DELETE ROWS, this
will delete all the rows in the table only if the temporary table was used. ON COMMIT
DELETE ROWS will delete the rows in the table even if the table was not used (if the
table does not have hold-able cursors open on it).

PRESERVE ROWS
The rows of the table will be preserved.
NOT LOGGED

Specifies the action taken on the global temporary table when a rollback operation

is performed. When a ROLLBACK (or ROLLBACK TO SAVEPOINT) operation is
performed, if the table was created in the unit of work (or savepoint), the table will be
dropped. If the table was dropped in the unit of work (or savepoint), the table will be
restored with no rows.

ON ROLLBACK DELETE ROWS

This is the default value for NOT LOGGED. NOT LOGGED [ON ROLLBACK DELETE
ROWS]] specifies the action that is to be taken on the global temporary table when a
ROLLBACK or (ROLLBACK TO SAVEPOINT) operation is performed. If the table data
has been changed, all the rows will be deleted.

Examples

set schema nyapp;
create table t1(cll int, cl2 date);

decl are gl obal tenporary table SESSION. t1(cll int) not | ogged;
-- The SESSI ON qualification is redundant here because tenporary
-- tables can only exist in the SESSI ON schena.

decl are gl obal tenporary table t2(c21 int) not | ogged;

-- The tenporary table is not qualified here with SESSI ON because
tenporary

-- tables can only exist in the SESSI ON schena.

insert into SESSION.t1 values (1);

-- SESSION qualification is mandatory here if you want to use
-- the tenporary table, because the current schema is "nyapp."

58

Derby Reference Manual

select * fromt1;
-- This select statenent is referencing the "nyapp.t1l" physical
-- table since the table was not qualified by SESSI ON.

Note: Temporary tables can be declared only in the SESSION schema. You should
never declare a physical schema with the SESSION name.
The following is a list of DB2 UDB DECLARE GLOBAL TEMPORARY TABLE functions
that are not supported by Derby:
e IDENTITY column-options
< IDENTITY attribute in copy-options
AS (fullselect) DEFINITION ONLY
NOT LOGGED ON ROLLBACK PRESERVE ROWS
IN tablespace-name
PARTITIONING KEY
WITH REPLACE

Restrictions on declared global temporary tables

Derby does not support the following features on temporary tables. Some of these
features are specific to temporary tables and some are specific to Derby.

Temporary tables cannot be specified in the following statements:
« ALTER TABLE
« CREATE INDEX
« CREATE SYNONYM
* CREATE TRIGGER
« CREATE VIEW
* GRANT
« LOCK TABLE
« RENAME
 REVOKE

You cannot use the following features with temporary tables:

« Synonyms, triggers and views on SESSION schema tables (including physical
tables and temporary tables)

« Caching statements that reference SESSION schema tables and views

« Temporary tables cannot be specified in referential constraints and primary keys

« Temporary tables cannot be referenced in a triggeredSQLStatement or in a WHEN
clause

» Check constraints on columns

» Generated-column-spec

 Importing into temporary tables

If a statement that performs an insert, update, or delete to the temporary table
encounters an error, all the rows of the temporary table are deleted.

The following data types cannot be used with Declared Global Temporary Tables:
- BLOB

CHAR FOR BIT DATA

CLOB

LONG VARCHAR

LONG VARCHAR FOR BIT DATA

VARCHAR FOR BIT DATA

« XML

Global temporary tables can be used in XA transactions, but can be declared and
accessed only within the scope of a single XA transaction. Derby can support access to
the table only until one of the following methods of the javax.transaction.xa.XAResource
interface is called:

59

Derby Reference Manual

* XAResource.end
* XAresource.prepare
+ XAResource.commit

When the XA transaction commits or aborts, the temporary table is dropped.

DELETE statement

The DELETE statement removes rows from a table.

Syntax

DELETE FROM tabl eNane [[AS] correl ati onNane]
[WHERE cl ause]

DELETE FROM t abl eNanmeWHERE CURRENT OF cl ause
}

The first syntactical form, called a searched delete, removes all rows identified by the
table name and WHERE clause.

The second syntactical form, called a positioned delete, deletes the current row of an
open, updatable cursor. For more information about updatable cursors, see SELECT
statement.

Examples

DELETE FROM SAMP. | N_TRAY

st nt . execut eUpdat e(" DELETE FROM SAWMP. | N_TRAY WHERE CURRENT OF " +
resul t Set. get Cursor Nane()) ;

Statement dependency system

A searched delete statement depends on the table being updated, all of its
conglomerates (units of storage such as heaps or indexes), and any other table named
in the WHERE clause. A CREATE or DROP INDEX statement for the target table of a
prepared searched delete statement invalidates the prepared searched delete statement.

The positioned delete statement depends on the cursor and any tables the cursor
references. You can compile a positioned delete even if the cursor has not been opened
yet. However, removing the open cursor with the JDBC close method invalidates the
positioned delete.

A CREATE or DROP INDEX statement for the target table of a prepared positioned
delete invalidates the prepared positioned delete statement.

DROP statements

Use DROP statements to remove functions, indexes, procedures, roles, schemas,
synonyms, tables, triggers, and views.

DROP DERBY AGGREGATE statement

The DROP DERBY AGGREGATE statement removes the specified user-defined
aggregate (UDA).

A UDA is created by a CREATE DERBY AGGREGATE statement.
Syntax

DROP DERBY AGCREGATE aggr egat eNane RESTRI CT

60

Derby Reference Manual

The RESTRICT keyword is required. CASCADE semantics are not supported. That is,
Derby will not track down and drop orphaned objects.

Dropping a UDA implicitly drops all USAGE privileges that reference it. See GRANT
statement and REVOKE statement for more information.

Derby raises an error if a trigger or view references the UDA.

Example

DROP DERBY AGGREGATE npbde RESTRI CT;

DROP FUNCTION statement

The DROP FUNCTION statement removes the specified Java function.
A function is created by a CREATE FUNCTION statement.

Syntax

DROP FUNCTI ON functi onNane

The argument identifies the particular function to be dropped and is valid only if there
is exactly one function instance with the functionName in the schema. The identified
function can have any number of parameters defined for it.

An error will occur in any of the following circumstances:

« If no function with the indicated name exists in the named or implied schema (the
error is SQLSTATE 42704)

« If there is more than one specific instance of the function in the named or implied
schema

* If you try to drop a user-defined function that is invoked in the generationClause of a
generated column

* If you try to drop a user-defined function that is invoked in a view or trigger

DROP INDEX statement

The DROP INDEX statement removes the specified index.
An index is created by a CREATE INDEX statement.
Syntax

DROP | NDEX i ndexNanme

Examples

DROP | NDEX Ori gl ndex
DROP | NDEX Dest | ndex
Statement dependency system

If there is an open cursor on the table from which the index is dropped, the DROP INDEX
statement generates an error and does not drop the index. Otherwise, statements that
depend on the index's table are invalidated.

DROP PROCEDURE statement
The DROP PROCEDURE statement removes the specified Java stored procedure.

A stored procedure is created by a CREATE PROCEDURE statement and is called by a
CALL (PROCEDURE) statement.

Syntax

DROP PROCEDURE pr ocedur eNane

61

Derby Reference Manual

Identifies the particular procedure to be dropped, and is valid only if there is exactly one
procedure instance with the procedureName in the schema. The identified procedure can
have any number of parameters defined for it.

An error will occur in any of the following circumstances:

« If no procedure with the indicated name exists in the named or implied schema (the
error is SQLSTATE 42704)
« If there is more than one specific instance of the procedure in the named or implied
schema
« If you try to drop a user-defined procedure that is invoked in a trigger
DROP ROLE statement

The DROP ROLE statement removes the specified SQL role.

A role is created by a CREATE ROLE statement.

Only the database owner can drop a role.

For more information on roles, see "Using SQL roles" in the Derby Security Guide.

Syntax

DROP ROLE r ol eNane

Dropping a role has the effect of removing the role from the database dictionary. This
means that no session user can henceforth set that role (see SET ROLE statement),

and any existing sessions that have that role as the current role (see CURRENT_ROLE
function) will now have a NULL CURRENT_ROLE. Dropping a role also has the effect of
revoking that role from any user and role it has been granted to. See REVOKE statement
for information on how revoking a role may impact any dependent objects.

Example

DROP ROLE reader;

DROP SCHEMA statement

The DROP SCHEMA statement removes the specified schema.

A schema is created by a CREATE SCHEMA statement.

The target schema must be empty for the drop to succeed.

Neither the APP schema (the default user schema) nor the SYS schema can be dropped.

Syntax

DROP SCHEMA schemaName RESTRI CT

The RESTRICT keyword enforces the rule that no objects can be defined in the specified
schema for the schema to be deleted from the database. The RESTRICT keyword is
required.

Example

-- Drop the SAMP schema

-- The SAMP schenma may only be deleted fromthe database

-- if no objects are defined in the SAMP schema.

DROP SCHEMA SAMP RESTRI CT

DROP SEQUENCE statement

The DROP SEQUENCE statement removes the specified sequence generator.

A sequence generator is created by a CREATE SEQUENCE statement.

62

Derby Reference Manual
Syntax
DROP SEQUENCE sequenceNane RESTRI CT

The RESTRICT keyword is required. If a trigger or view references the sequence
generator, Derby throws an exception.

Dropping a sequence generator implicitly drops all USAGE privileges that reference it.

Example

DROP SEQUENCE order _i d RESTRI CT;

DROP SYNONYM statement

The DROP SYNONYM statement removes the specified synonym from a table or view.
A synonym is created by a CREATE SYNONYM statement.

An error will occur if there are any views or triggers dependent on the synonym.

Syntax

DROP SYNONYM synonymNanme

DROP TABLE statement

The DROP TABLE statement removes the specified table.
A table is created by a CREATE TABLE statement.
Syntax

DROP TABLE t abl eNane

Statement dependency system

Triggers, constraints (primary, unique, check and references from the table being
dropped), and indexes defined on the table are silently dropped. The existence of an
open cursor that references a table being dropped causes the DROP TABLE statement
to generate an error, and the table is not dropped.

The DROP TABLE statement will also generate an error if the table is used in a view, or if
a trigger defined on another table references the table in its trigger action.

Dropping a table invalidates statements that depend on the table. (Invalidating a
statement causes it to be recompiled upon the next execution. See Interaction with the
dependency system.)

DROP TRIGGER statement

The DROP TRIGGER statement removes the specified trigger.
A trigger is created by a CREATE TRIGGER statement.
Syntax

DROP TRI GGER tri gger Nane

Example

DROP TRI GGER TRI GL
Statement dependency system

When a table is dropped, all triggers on that table are automatically dropped. (You don't
have to drop a table's triggers before dropping the table.)

63

Derby Reference Manual
DROP TYPE statement

The DROP TYPE statement removes the specified user-defined type (UDT).
A UDT is created by a CREATE TYPE statement.
Syntax

DROP TYPE typeNanme RESTRICT

The RESTRICT keyword is required. CASCADE semantics are not supported. That is,
Derby will not track down and drop orphaned objects.

Dropping a UDT implicitly drops all USAGE privileges that reference it.

You cannot drop a type if it would make another SQL object unusable. This includes the
following restrictions:

» Table columns: No table columns have this UDT.

» Views: No view definition involves expressions which have this UDT.

 Triggers: No trigger definition involves expressions which have this UDT.

« Constraints: No constraints reference expressions of this UDT.

» Generated columns: No generated columns reference expressions of this UDT.

< Routines: No functions or procedures have arguments or return values of this UDT.
» Table Functions: No table functions return tables with columns of this UDT.

Example

DROP TYPE price RESTRICT;

DROP VIEW statement

The DROP VIEW statement removes the specified view.
A view is created by a CREATE VIEW statement.
Syntax

DROP VI EW vi ewNane

Example

DROP VI EW Anl denti fi er
Statement dependency system

Any statements referencing the view are invalidated on a DROP VIEW statement. DROP
VIEW fails if there are any views, triggers, or open cursors dependent on the view.

Normally, you must drop a view before you drop any objects that the view depends on.
However, if you issue an ALTER TABLE DROP COLUMN command with the CASCADE
option, any views that depend on the column will be dropped. Also, if you use a REVOKE
statement to revoke privileges on objects that a view depends on, the view will be
dropped. Similarly, if you use a DROP ROLE statement to drop a role that has privileges
on objects that a view depends on, the view will be dropped.

GRANT statement

The GRANT statement gives privileges to a specific user or role, or to all users, to
perform actions on database objects.

You can also use the GRANT statement to grant a role to a user, to PUBLIC, or to
another role.

The following types of privileges can be granted:

64

Derby Reference Manual

» Delete data from a specific table.

« Insert data into a specific table.

« Create a foreign key reference to the named table or to a subset of columns from a
table.

» Select data from a table, view, or a subset of columns in a table.

« Create a trigger on a table.

« Update data in a table or in a subset of columns in a table.

» Run a specified function or procedure.

« Use a sequence generator, a user-defined type, or a user-defined aggregate.

Before you issue a GRANT statement, check that the derby.database.sqlAuthorization
property is set to t r ue. The derby.database.sqlAuthorization property enables the SQL
Authorization mode.

You can grant privileges on an object if you are the owner of the object or the database
owner. See the CREATE statement for the database object that you want to grant
privileges on for more information.

The syntax that you use for the GRANT statement depends on whether you are granting
privileges to a schema object or granting a role.

For more information on using the GRANT statement, see "Using fine-grained user
authorization" in the Derby Security Guide.

Syntax for tables

GRANT privilegeType ON[TABLE] { tableNane | viewNane } TO grantees

Syntax for routines
GRANT EXECUTE ON FUNCTI ON functi onNane TO grant ees

GRANT EXECUTE ON PROCEDURE procedureNane TO grant ees

Syntax for sequence generators

GRANT USAGE ON SEQUENCE sequenceNane TO grant ees

In order to use a sequence generator, you must have the USAGE privilege on it. This
privilege can be granted to users and to roles. See CREATE SEQUENCE statement for
more information.

Syntax for user-defined types

GRANT USAGE ON TYPE typeNane TO grant ees

In order to use a user-defined type, you must have the USAGE privilege on it. This
privilege can be granted to users and to roles. See CREATE TYPE statement for more
information.

Syntax for user-defined aggregates

CGRANT USAGE ON DERBY AGGREGATE aggregat eNane TO gr ant ees

In order to use a user-defined aggregate, you must have the USAGE privilege on it. This
privilege can be granted to users and to roles. See CREATE DERBY AGGREGATE
statement for more information.

Syntax for roles
GRANT roleNanme [, roleNanme]* TO grantees

Before you can grant a role to a user or to another role, you must create the role using
the CREATE ROLE statement. Only the database owner can grant a role.

65

Derby Reference Manual

A role A contains another role B if role B is granted to role A, or is contained in a role C
granted to role A. Privileges granted to a contained role are inherited by the containing
roles. So the set of privileges identified by role A is the union of the privileges granted to
role A and the privileges granted to any contained roles of role A.

privilegeType

{ ALL PRIVILEGES | privilegelList }
privilegeList
tablePrivilege [, tablePrivilege]*

tablePrivilege

DELETE |

| NSERT |

REFERENCES [col ummList] |
SELECT [columlList] |

TRI GGER |

UPDATE [col umlLi st]

columnList

(columldentifier [, columldentifier]*)

Use the ALL PRIVILEGES privilege type to grant all of the privileges to the user or role
for the specified table. You can also grant one or more table privileges by specifying a
privilegeList.

Use the DELETE privilege type to grant permission to delete rows from the specified
table.

Use the INSERT privilege type to grant permission to insert rows into the specified table.

Use the REFERENCES privilege type to grant permission to create a foreign key
reference to the specified table. If a columnList is specified with the REFERENCES
privilege, the permission is valid on only the foreign key reference to the specified
columns.

Use the SELECT privilege type to grant permission to perform SELECT statements

or selectExpressions on a table or view. If a column list is specified with the SELECT
privilege, the permission is valid on only those columns. If no column list is specified, then
the privilege is valid on all of the columns in the table.

For queries that do not select a specific column from the tables involved in a SELECT
statement or selectExpression (for example, queries that use COUNT(*)), the user must
have at least one column-level SELECT privilege or table-level SELECT privilege.

Use the TRIGGER privilege type to grant permission to create a trigger on the specified
table.

Use the UPDATE privilege type to grant permission to use the UPDATE statement on the
specified table. If a column list is specified, the permission applies only to the specified
columns. To update a row using a statement that includes a WHERE clause, you must
have the SELECT privilege on the columns in the row that you want to update.

grantees

{ authorizationldentifier | roleNane | PUBLIC }
[, { authorizationldentifier | roleName | PUBLIC}]*

You can grant privileges or roles to specific users or roles or to all users. Use the
keyword PUBLIC to specify all users. When PUBLIC is specified, the privileges or roles
affect all current and future users. The privileges granted to PUBLIC and to individual

66

Derby Reference Manual

users or roles are independent privileges. For example, a SELECT privilege on table t is
granted to both PUBLIC and to the authorization ID harry. The SELECT privilege is later
revoked from the authorization ID har r y, but Harry can access the table t through the
PUBLIC privilege.

Either the object owner or the database owner can grant privileges to a user or to a role.
Only the database owner can grant a role to a user or to another role.

Examples
To grant the SELECT privilege on table t to the authorization IDs mar i a and harry, use
the following syntax:

GRANT SELECT ON TABLE t TO nari a, harry

To grant the UPDATE and TRIGGER privileges on table t to the authorization IDs ani t a
and zhi , use the following syntax:

GRANT UPDATE, TRIGGER ON TABLE t TO anita, zhi

To grant the SELECT privilege on table s. v to all users, use the following syntax:

GRANT SELECT ON TABLE s.v to PUBLIC

To grant the EXECUTE privilege on procedure p to the authorization ID geor ge, use the
following syntax:

GRANT EXECUTE ON PROCEDURE p TO george

To grant the role pur chases_r eader _r ol e to the authorization IDs geor ge and
mar i a, use the following syntax:

GRANT pur chases_reader _rol e TO george, mari a

To grant the SELECT privilege on table t to the role pur chases_r eader rol e, use
the following syntax:

GRANT SELECT ON TABLE t TO purchases_reader_rol e

To grant the USAGE privilege on the sequence generator or der _i d to the role
sal es_r ol e, use the following syntax:

GRANT USAGE ON SEQUENCE order _id TO sal es_rol e;

To grant the USAGE privilege on the user-defined type pri ce to the role
fi nance_r ol e, use the following syntax:

GRANT USAGE ON TYPE price TO finance_rol e;

To grant the USAGE privilege on the user-defined aggregate t ypes. naxPri ce to the
role sal es_r ol e, use the following syntax:

GRANT USAGE ON DERBY AGGREGATE types. maxPrice TO sal es_rol e;

INSERT statement
The INSERT statement creates one or more rows and stores them in the named table.

The number of values assigned in an INSERT statement must be the same as the
number of specified or implied columns.

Whenever you insert into a table which has generated columns, Derby calculates the
values of those columns.

Syntax

67

Derby Reference Manual

I NSERT | NTO t abl eNane
[(sinpleColumNane [, sinpleColumNane]*)]
query [ORDER BY cl ause]
[result offset clause]
[fetch first clause]

The query can be:
* A selectExpression
A single-row or multiple-row VALUES expression

Single-row and multiple-row VALUES expressions can include the keyword
DEFAULT. Specifying DEFAULT for a column inserts the column's default value
into the column. Another way to insert the default value into the column is to omit
the column from the column list and only insert values into other columns in the
table. For more information, see VALUES expression.

The DEFAULT literal is the only value which you can directly insert into a generated
column.
« UNION expressions

When you want insertion to happen with a specific ordering (for example, in conjunction
with auto-generated keys), it can be useful to specify an ORDER BY clause on the result
set to be inserted.

If the query is a VALUES expression, it cannot contain or be followed by an ORDER BY,
result offset, or fetch first clause. However, if the VALUES expression does not contain
the DEFAULT keyword, the VALUES clause can be put in a subquery and ordered, as in
the following statement:

I NSERT INTO t SELECT * FROM (VALUES 'a','c','b') t ORDER BY 1;

Examples

I NSERT | NTO COUNTRI ES
VALUES (' Taiwan', 'TW, 'Asia')

-- Insert a new departnent into the DEPARTMENT tabl e,
-- but do not assign a nanager to the new departnent
I NSERT | NTO DEPARTMENT (DEPTNO, DEPTNAME, ADVRDEPT)
VALUES (' E31', 'ARCH TECTURE , 'EO1')
-- Insert two new departnents using one statenent
-- into the DEPARTMENT table as in the previous exanple,
-- but do not assign a manager to the new department.
I NSERT | NTO DEPARTMENT (DEPTNO, DEPTNAME, ADVRDEPT)
VALUES ('B11', 'PURCHASING, 'BO01'),
(" E41', ' DATABASE ADM NI STRATION , ' EO01')
-- Create a tenporary table MA_EMP_ACT with the
-- sane colums as the EMP_ACT table.
-- Load MA_ EMP_ACT with the rows fromthe EMP_ACT
-- table with a project nunber (PRGOINO

starting with the letters ' MA' .
CREATE TABLE MA_EMP_ACT

(
EMPNO CHAR(6) NOT NULL,
PROJNO CHAR(6) NOT NULL,
ACTNO SMALLINT NOT NULL,
EMPTI ME DEC(5, 2),
EMSTDATE DATE,
EVENDATE DATE

DE

I NSERT | NTO MA_EMP_ACT
SELECT * FROM EMP_ACT
VWHERE SUBSTR(PRO]NO 1, 2) ="M
-- Insert the DEFAULT vaI ue for the LOCATI ON col um
| NSERT | NTO DEPARTINENT
VALUES (' E31', 'ARCH TECTURE , '00390', 'EO1', DEFAULT)

68

Derby Reference Manual

-- Create an Al RPORTS table and insert into it

-- sone of the fields fromthe CITIES table, with the airport

-- codes sorted al phabetically

CREATE TABLE Al RPORTS (

Al RPORT_I D | NTEGER NOT NULL GENERATED ALWAYS AS | DENTI TY
PRI MARY KEY,

Al RPORT VARCHAR(3),

CI TY VARCHAR(24) NOT NULL,

COUNTRY VARCHAR(26) NOT NULL

)i

I NSERT | NTO Al RPORTS (Al RPORT, CITY, COUNTRY)
SELECT Al RPORT, CI TY_NAME, COUNTRY FROM CI Tl ES
ORDER BY Al RPORT;

Statement dependency system

The INSERT statement depends on the table being inserted into, all of the conglomerates
(units of storage such as heaps or indexes) for that table, and any other table named in
the statement. Any statement that creates or drops an index or a constraint for the target
table of a prepared INSERT statement invalidates the prepared INSERT statement.

LOCK TABLE statement

The LOCK TABLE statement explicitly acquires a shared or exclusive table lock on the
specified table.

The table lock lasts until the end of the current transaction.
To lock a table, you must be either the database owner or the table owner.

Explicitly locking a table is useful to:
» Avoid the overhead of multiple row locks on a table (in other words, user-initiated
lock escalation)
» Avoid deadlocks

You cannot lock system tables with this statement.

Syntax

LOCK TABLE tabl eName IN { SHARE | EXCLUSI VE } MODE

After a table is locked in either mode, a transaction does not acquire any subsequent
row-level locks on a table. For example, if a transaction locks the entire Fl i ght s table in
share mode in order to read data, a particular statement might need to lock a particular
row in exclusive mode in order to update the row. However, the previous table-level lock
on the Fl i ght s table forces the exclusive lock to be table-level as well.

If the specified lock cannot be acquired because another connection already holds a lock
on the table, a statement-level exception is raised (SQLState X0X02) after the deadlock
timeout period.

Examples
To lock the entire Fl i ght s table in share mode to avoid a large number of row locks,
use the following statement:

LOCK TABLE Flights I N SHARE MODE;
SELECT *

FROM Fl i ght's

WHERE orig_airport > 'QOO ;

You have a transaction with multiple UPDATE statements. Since each of the individual
statements acquires only a few row-level locks, the transaction will not automatically
upgrade the locks to a table-level lock. However, collectively the UPDATE statements

69

Derby Reference Manual
acquire and release a large number of locks, which might result in deadlocks. For this
type of transaction, you can acquire an exclusive table-level lock at the beginning of the
transaction. For example:

LOCK TABLE Fli ght Avail ability I N EXCLUSI VE MODE;

UPDATE Fl i ght Avai l ability

SET econony_seats_taken = (econony_seats_taken + 2)

WHERE flight_id = 'AA1265' AND flight_date = DATE(' 2004-03-31");

UPDATE Fl i ght Avai l ability

SET econony_seats_taken = (econony_seats_taken + 2)

WHERE flight_id = 'AA1265' AND flight_date = DATE(' 2004- 04-11");
UPDATE Fl i ght Avai l ability

SET econony_seats_taken = (econonmy_seats_taken + 2)

WHERE flight_id = 'AA1265' AND flight_date = DATE(' 2004- 04-12");
UPDATE Fl i ght Avai l ability

SET econony_seats_taken = (econony_seats_taken + 2)

WHERE flight_id = 'AA1265' AND flight_date = DATE(' 2004- 04-15");

If a transaction needs to look at a table before updating the table, acquire an exclusive
lock before selecting to avoid deadlocks. For example:

LOCK TABLE Maps | N EXCLUSI VE MODE;
SELECT MAX(map_id) + 1 FROM Maps;
-- INSERT I NTO Maps .

MERGE statement

The MERGE statement scans a table and either INSERTs, UPDATEs, or DELETES rows
depending on whether the rows satisfy a specified condition.

Syntax

MERGE INTO targetTable [[AS] targetCorrel ati onName]
USI NG sourceTable [[AS] sourceCorrel ati onNane]
ON searchCondi ti on nergeWenC ause [nergeWendC ause]*

Both targetTable and sourceTable are tableNames.

targetTable must identify a base table. targetTable may not be a transition table in a
triggered statement, and it may not be a synonym.

sourceTable must identify a base table or a table function, and it may not be a synonym.
Both targetCorrelationName and sourceCorrelationName are correlationNames.

The unqualified source table name (or its correlation name) may not be the same as the
unqualified target table name (or its correlation name).

The searchCondition is a Boolean expression. Columns referenced by the
searchCondition must be in either targetTable or sourceTable. Functions mentioned in
the searchCondition may not modify SQL data.

The row count for a successful MERGE statement is the total number of rows inserted,
updated, and deleted by the statement.

Note: The MERGE statement is valid only after a database has been fully upgraded to
Derby Release 10.11 or higher. (See "Upgrading a database" in the Derby Developer's
Guide for more information.) This statement has no meaning in a database that is at
Release 10.10 or lower.

mergeWhenClause

nmer geWhenhMat ched | ner geWhenNot Mat ched

70

Derby Reference Manual
mergeWhenMatched
VWHEN MATCHED [AND mat chRefi nenent] THEN { nergeUpdate | DELETE }

The matchRefinement is a Boolean expression. Columns referenced by the
matchRefinement must be in either targetTable or sourceTable. Functions mentioned in
the matchRefinement may not modify SQL data.

mergeWhenNotMatched

WHEN NOT MATCHED [AND nmat chRefinenent] THEN nergel nsert

The matchRefinement is a Boolean expression. Columns referenced by the
matchRefinement must be in either targetTable or sourceTable. Functions mentioned in
the matchRefinement may not modify SQL data.

Although permitted to do so by the SQL Standard, Derby does not currently support
subqueries in WHEN [NOT] MATCHED clauses.

mergeUpdate

UPDATE SET col umm- Nane = value [, colum-Name = value]*
Columns updated must be columns in targetTable.
Functions mentioned in the UPDATE values may not modify SQL data.

On the right side of SET operators for UPDATE actions, DEFAULT is the only value
allowed for generated and identity columns.

No list of updated columns may mention the same column more than once.

The data types of updated values must be assignable to the corresponding columns
according to the rules documented in Data type assignments and comparison, sorting,
and ordering.

mergelnsert

INSERT [(Sinple-colum-Nanme [, Sinple-colum-Nane]*)] VALUES (
value [, value]*)

Columns inserted must be columns in targetTable.
Functions mentioned in the INSERT values may not modify SQL data.

No list of inserted columns may mention identity columns, or may mention the same
column more than once.

In a VALUES clause, DEFAULT is the only allowed value for generated columns.

The data types of inserted values must be assignable to the corresponding columns
according to the rules documented in Data type assignments and comparison, sorting,
and ordering.

Required privileges

The user who executes a MERGE statement must have the following privileges. See
GRANT statement for information on privileges.

« UPDATE privilege on every updated column of targetTable. A blanket UPDATE
privilege on the entire targetTable would cover this.

* INSERT privilege on targetTable if there are WHEN NOT MATCHED clauses.

o DELETE privilege on targetTable if there are WHEN MATCHED ... THEN DELETE
clauses.

« EXECUTE privilege on all functions mentioned in the Boolean expressions and in
the INSERT/UPDATE values.

71

Derby Reference Manual

» USAGE privilege on all sequences and user-defined types mentioned in the
Boolean expressions and in the INSERT/UPDATE values. See CREATE
SEQUENCE statement and CREATE TYPE statement for more information.

e SELECT privilege on all columns mentioned in the Boolean expressions and the
value expressions of SET clauses.

MERGE statement behavior

The MERGE statement behaves as described in the following table.

Table 3. Merge statement behavior

Situation or Behavior

Description

Source table is empty

If the sourceTable is empty, a "no data" warning is
raised with SQLState 02000.

An initial join is performed

Before any changes are made to targetTable,

the sourceTable is joined to the targetTable by
means of the ON clause. Call this join result J. Let
N denote the rows in sourceTable missing from this
join.

Clause order is important

The mergeWhenMatched and
mergeWhenNotMatched clauses are applied in
declaration order.

The first matched clause wins

For each row in J, Derby applies only the
first mergeWhenMatched clause whose
matchRefinement is satisfied.

The first not matched clause wins

For each row in N, Derby applies only the
first mergeWhenNotMatched clause whose
matchRefinement is satisfied.

Double dipping is not permitted

A cardinality violation is raised if a MERGE
statement attempts to change (update or delete)
the same row twice. This condition can occur if
more than one source row joins to the same target

row.

Examples

MERGE | NTO hot | ssues h
USI NG i ssues i

ON h.issuelD = i.issuelD

VWHEN MATCHED AND i . | ast Updated =
THEN UPDATE SET h. | ast Updated =

CURRENT_DATE
i .| astUpdated

VWHEN MATCHED AND i . | ast Updat ed < CURRENT_DATE THEN DELETE
VWHEN NOT MATCHED AND i . | ast Updat ed = CURRENT_DATE

THEN | NSERT VALUES (

MERGE | NTO conpani es ¢
USI NG adhocl nvoi ces a
ON a. conpanyNane =
VWHEN NOT MATCHED THEN | NSERT

i.issuel D,

i.lastUpdated);

c. conmpanyName

(conmpanyNarme) VALUES (a.conpanyNane);

MERGE | NTO war ehouse. product Li st w

USI NG producti on. product Li st
ON w. product| D = p. product| D

WHEN MATCHED and w. | ast Updated !
THEN UPDATE SET | ast Updat ed
descri ption

p

ast Updat ed
ast Updat ed,

=p.l
=p.l
= p.description,
ice

price = p.pric

72

Derby Reference Manual

VWHEN NOT MATCHED
THEN | NSERT val ues (p.productl D, p.lastUpdated, p.description,
p.price);

RENAME statements
Use the RENAME statements with indexes, columns, and tables.
RENAME COLUMN statement

The RENAME COLUMN statement renames an existing column in an existing table in
any schema (except the schema SYS).

To rename a column, you must be either the database owner or the table owner.

Other types of table alterations are possible; see ALTER TABLE statement for more
information.

Syntax

RENAME COLUMWN t abl eNane. si npl eCol utmNane TO si npl eCol unmName

Examples
To rename the manager column in table employee to supervisor, use the following
syntax:

RENAME COLUMN EMPLOYEE. MANACER TO SUPERVI SOR

You can combine ALTER TABLE and RENAME COLUMN to modify a column's data
type. To change column c1 of table t to the new data type NEWTYPE:

ALTER TABLE t ADD COLUMN c1_newtype NEWIYPE
UPDATE t SET cl_newtype = cl

ALTER TABLE t DROP CCOLUWN c1

RENAME COLUWN t.cl _newtype TO cl

Usage notes

Restriction: If a view, trigger, check constraint, or generationClause of a generated
column references the column, an attempt to rename it will generate an error.
Restriction: The RENAME COLUMN statement is not allowed if there are any open
cursors that reference the column that is being altered.

Note: If there is an index defined on the column, the column can still be renamed; the
index is automatically updated to refer to the column by its new name

RENAME INDEX statement

The RENAME INDEX statement renames an index in the current schema, which can be
any schema except the schema SYS.

Syntax

RENAME | NDEX i ndexNane TO newl ndexNane
Example

RENANME | NDEX DESTI NDEX TO ARRI VALI NDEX

Statement dependency system

RENAME INDEX is not allowed if there are any open cursors that reference the index
being renamed.

73

Derby Reference Manual
RENAME TABLE statement

The RENAME TABLE statement renames an existing table in any schema (except the
schema SYS).

To rename a table, you must be either the database owner or the table owner.

Syntax

RENANMVE TABLE t abl eNane TO newTabl eNanme

If there is a view that references the table, attempts to rename it will generate an error. In
addition, if there are any check constraints or triggers on the table, attempts to rename it
will also generate an error.

Example

RENAVE TABLE SAMP. EMP_ACT TO EMPLOYEE_ACT
See ALTER TABLE statement for more information.
Statement dependency system

The RENAME TABLE statement is not allowed if there are any open cursors that
reference the table that is being altered.

REVOKE statement

The REVOKE statement removes privileges from a specific user or role, or from all users,
to perform actions on database objects.

You can also use the REVOKE statement to revoke a role from a user, from PUBLIC, or
from another role.

The following types of privileges can be revoked:
» Delete data from a specific table.
* Insert data into a specific table.
« Create a foreign key reference to the named table or to a subset of columns from a
table.
« Select data from a table, view, or a subset of columns in a table.
» Create a trigger on a table.
« Update data in a table or in a subset of columns in a table.
* Run a specified routine (function or procedure).
« Use a sequence generator, a user-defined type, or a user-defined aggregate.

The derby.database.sqglAuthorization property must be set to t r ue before you can use
the GRANT statement or the REVOKE statement. The derby.database.sqlAuthorization
property enables SQL Authorization mode.

You can revoke privileges for an object if you are the owner of the object or the database
owner.

The syntax that you use for the REVOKE statement depends on whether you are
revoking privileges to a schema object or revoking a role.

For more information on using the REVOKE statement, see "Using fine-grained user
authorization" in the Derby Security Guide.

Syntax for tables

REVOKE privil egeType ON [TABLE | { tableNane | viewNane } FROM revokees

Revoking a privilege without specifying a column list revokes the privilege for all of the
columns in the table.

74

Derby Reference Manual
Syntax for routines

REVOKE EXECUTE ON FUNCTI ON functi onNane FROM r evokees RESTRI CT

REVOKE EXECUTE ON PROCEDURE pr ocedur eNane FROM r evokees RESTRI CT

You must use the RESTRICT clause on REVOKE statements for routines. The
RESTRICT clause specifies that the EXECUTE privilege cannot be revoked if the
specified routine is used in a view, trigger, or constraint, and the privilege is being
revoked from the owner of the view, trigger, or constraint.

Syntax for sequence generators

REVOKE USAGE ON SEQUENCE sequenceNane FROM revokees RESTRI CT

In order to use a sequence generator, you must have the USAGE privilege on it. This
privilege can be revoked from users and roles. Only RESTRICTed revokes are allowed.
This means that the REVOKE statement cannot make a view, trigger, or constraint
unusable by its owner. The USAGE privilege cannot be revoked from the schema owner.
See CREATE SEQUENCE statement for more information.

Syntax for user-defined types

REVOKE USAGE ON TYPE typeNanme FROM revokees RESTRI CT

In order to use a user-defined type, you must have the USAGE privilege on it. This
privilege can be revoked from users and roles. Only RESTRICTed revokes are allowed.
This means that the REVOKE statement cannot make a view, trigger, or constraint
unusable by its owner. The USAGE privilege cannot be revoked from the schema owner.
See CREATE TYPE statement for more information.

Syntax for user-defined aggregates

REVOKE USAGE ON DERBY AGGREGATE aggr egat eNane FROM r evokees RESTRI CT

In order to use a user-defined aggregate, you must have the USAGE privilege on it. This
privilege can be revoked from users and roles. Only RESTRICTed revokes are allowed.
This means that the REVOKE statement cannot make a view or trigger unusable by its
owner. The USAGE privilege cannot be revoked from the schema owner. See CREATE
DERBY AGGREGATE statement for more information.

Syntax for roles

REVOKE rol eNane [, rol eName]* FROM revokees
Only the database owner can revoke a role.
privilegeType

ALL PRI VILEGES | privilegelist
privilegeList
tablePrivilege [, tablePrivilege]*

tablePrivilege

DELETE |

I NSERT |

REFERENCES [col umList] |
SELECT [col umList] |

TRI GGER |

UPDATE [col umLi st]

columnList

75

Derby Reference Manual
(columldentifier [, columldentifier]*)

Use the ALL PRIVILEGES privilege type to revoke all of the privileges from the user
or role for the specified table. You can also revoke one or more table privileges by
specifying a privilegeList.

Use the DELETE privilege type to revoke permission to delete rows from the specified
table.

Use the INSERT privilege type to revoke permission to insert rows into the specified
table.

Use the REFERENCES privilege type to revoke permission to create a foreign key
reference to the specified table. If a column list is specified with the REFERENCES
privilege, the permission is revoked on only the foreign key reference to the specified
columns.

Use the SELECT privilege type to revoke permission to perform SELECT statements on
a table or view. If a column list is specified with the SELECT privilege, the permission is
revoked on only those columns. If no column list is specified, then the privilege is valid on
all of the columns in the table.

Use the TRIGGER privilege type to revoke permission to create a trigger on the specified
table.

Use the UPDATE privilege type to revoke permission to use the UPDATE statement
on the specified table. If a column list is specified, the privilege is revoked only on the
specified columns.

revokees

{ authorizationldentifier | roleNane | PUBLIC }
[, { authorizationldentifier | roleName | PUBLIC}]*

You can revoke the privileges from specific users or roles or from all users. Use the
keyword PUBLIC to specify all users. The privileges revoked from PUBLIC and from
individual users or roles are independent privileges. For example, a SELECT privilege

on table t is revokeed to both PUBLIC and to the authorization ID har ry. The SELECT
privilege is later revoked from the authorization ID har r y, but the authorization ID harry
can access the table t through the PUBLIC privilege.

You can revoke a role from a role, from a user, or from PUBLIC.
Restriction: You cannot revoke the privileges of the owner of an object.
Prepared statements and open result sets/cursors

Checking for privileges happens at statement execution time, so prepared statements are
still usable after a revoke action. If sufficient privileges are still available for the session,
prepared statements will be executed, and for queries, a result set will be returned.

Once a result set has been returned to the application (by executing a prepared
statement or by direct execution), it will remain accessible even if privileges or roles are
revoked in a way that would cause another execution of the same statement to fail.

Cascading object dependencies

For views, triggers, and constraints, if the privilege on which the object depends on is
revoked, the object is automatically dropped. Derby does not try to determine if you
have other privileges that can replace the privileges that are being revoked. For more
information, see "Configuring fine-grained user authorization" and "Privileges on views,
triggers, constraints, and generated columns" in the Derby Security Guide.

Limitations

76

Derby Reference Manual
The following limitations apply to the REVOKE statement:

Table-level privileges
All of the table-level privilege types for a specified revokeee and table ID are stored
in one row in the SYSTABLEPERMS system table. For example, when user 2 is
revokeed the SELECT and DELETE privileges on table user 1. t 1, a row is added to
the SYSTABLEPERMS table. The GRANTEE field contains user 2 and the TABLEID
contains user 1. t 1. The SELECTPRIV and DELETEPRIV fields are setto Y. The
remaining privilege type fields are set to N.

When a revokeee creates an object that relies on one of the privilege types,

the Derby engine tracks the dependency of the object on the specific row in the
SYSTABLEPERMS table. For example, user 2 creates the view v1 by using the
statement SELECT * FROM user 1. t 1, the dependency manager tracks the
dependency of view v1 on the row in SYSTABLEPERMS for GRANTEE(user 2),
TABLEID(user 1. t 1). The dependency manager knows only that the view is
dependent on a privilege type in that specific row, but does not track exactly which
privilege type the view is dependent on.

When a REVOKE statement for a table-level privilege is issued for a revokeee and
table ID, all of the objects that are dependent on the revokeee and table ID are
dropped. For example, if user 1 revokes the DELETE privilege on table t 1 from
user 2, the row in SYSTABLEPERMS for GRANTEE(user 2), TABLEID(user 1.t 1)
is modified by the REVOKE statement. The dependency manager sends a revoke
invalidation message to the view user 2. v1 and the view is dropped even though
the view is not dependent on the DELETE privilege for GRANTEE(user 2),
TABLEID(user 1.t 1).

Column-level privileges
Only one type of privilege for a specified revokeee and table ID are stored in one
row in the SYSCOLPERMS system table. For example, when user 2 is revokeed the
SELECT privilege on table user 1. t 1 for columns c12 and c13, a row is added to
the SYSCOLPERMS. The GRANTEE field contains user 2, the TABLEID contains
user 1.t 1, the TYPE field contains S, and the COLUMNS field contains c12, c¢13.

When a revokeee creates an object that relies on the privilege type and the subset
of columns in a table ID, the Derby engine tracks the dependency of the object on
the specific row in the SYSCOLPERMS table. For example, user 2 creates the
view v1 by using the statement SELECT c11 FROM user 1.t 1, the dependency
manager tracks the dependency of view v1 on the row in SYSCOLPERMS for
GRANTEE(user 2), TABLEID(user 1. t 1), TYPE(S). The dependency manager
knows that the view is dependent on the SELECT privilege type, but does not track
exactly which columns the view is dependent on.

When a REVOKE statement for a column-level privilege is issued for a revokeee,
table ID, and type, all of the objects that are dependent on the revokeee, table

ID, and type are dropped. For example, if user 1 revokes the SELECT privilege

on column ¢12 on table user 1. t 1 from user 2, the row in SYSCOLPERMS for
GRANTEE(user 2), TABLEID(user 1. t 1), TYPE(S) is modified by the REVOKE
statement. The dependency manager sends a revoke invalidation message to the
view user 2. v1 and the view is dropped even though the view is not dependent on
the column c12 for GRANTEE(user 2), TABLEID(user 1. t 1), TYPE(S).

Roles
Derby tracks any dependencies on the definer's current role for views, constraints,
and triggers. If privileges were obtainable only via the current role when the object
in question was defined, that object depends on the current role. The object will
be dropped if the role is revoked from the defining user or from PUBLIC, as the
case may be. Also, if a contained role of the current role in such cases is revoked,

77

Derby Reference Manual

dependent objects will be dropped. Note that dropping may be too pessimistic. This
is because Derby does not currently make an attempt to recheck if the necessary
privileges are still available in such cases.

Revoke examples
To revoke the SELECT privilege on table t from the authorization IDs mari a and harry,
use the following syntax:

REVOKE SELECT ON TABLE t FROM nmri a, harry

To revoke the UPDATE and TRIGGER privileges on table t from the authorization IDs
ani t a and zhi , use the following syntax:

REVOKE UPDATE, TRI GGER ON TABLE t FROM ani t a, zhi

To revoke the SELECT privilege on table s. v from all users, use the following syntax:

REVOKE SELECT ON TABLE s.v FROM PUBLIC

To revoke the UPDATE privilege on columns c1 and c2 of table s. v from all users, use
the following syntax:

REVOKE UPDATE (cl1,c2) ON TABLE s.v FROM PUBLIC

To revoke the EXECUTE privilege on procedure p from the authorization ID geor ge, use
the following syntax:

REVOKE EXECUTE ON PROCEDURE p FROM geor ge RESTRI CT

To revoke the role pur chases_r eader _r ol e from the authorization IDs geor ge and
mari a, use the following syntax:

REVOKE pur chases_reader _rol e FROM george, nari a

To revoke the SELECT privilege on table t from the role pur chases_r eader _rol e,
use the following syntax:

REVOKE SELECT ON TABLE t FROM purchases_reader _rol e

To revoke the USAGE privilege on the sequence generator or der _i d from the role
sal es_rol e, use the following syntax:

REVOKE USAGE ON SEQUENCE order id FROM sal es_rol e;

To revoke the USAGE privilege on the user-defined type pri ce from the role
fi nance_r ol e, use the following syntax:

REVOKE USAGE ON TYPE price FROM finance_rol e;

To revoke the USAGE privilege on the user-defined aggregate t ypes. maxPri ce from
the role sal es_r ol e, use the following syntax:

REVOKE USAGE ON DERBY AGGREGATE types. maxPrice FROM sal es_rol e;

SELECT statement
The SELECT statement performs a query on one or more tables.

Syntax

query
[ORDER BY cl ause]

[result offset clause]
[fetch first clause]

78

Derby Reference Manual

[FOR UPDATE cl ause]
[WTH{ RR| RS| CS| UR}]

A SELECT statement consists of a query with an optional ORDER BY clause, an optional
result offset clause, an optional fetch first clause, an optional FOR UPDATE clause, and
an optional isolation level. The SELECT statement is so named because the typical first
word of the query construct is SELECT. (A query includes the VALUES expression and
UNION, INTERSECT, and EXCEPT expressions as well as SELECT expressions).

The ORDER BY clause guarantees the ordering of the ResultSet. The result offset clause
and the fetch first clause can be used to fetch only a subset of the otherwise selected
rows, possibly with an offset into the result set. The FOR UPDATE clause makes the
result set's cursor updatable. The SELECT statement supports the FOR FETCH ONLY
clause. The FOR FETCH ONLY clause is synonymous with the FOR READ ONLY
clause.

You can set the isolation level in a SELECT statement usingthe WTH { RR | RS |
CS | UR } syntax.

For queries that do not select a specific column from the tables involved in the SELECT
statement (for example, queries that use COUNT(*)), the user must have at least one
column-level SELECT privilege or table-level SELECT privilege. See GRANT statement
for more information.

Example

-- lists the names of the expression
-- SAL+BONUS+COWM as TOTAL_PAY and
-- orders by the new name TOTAL_PAY
SELECT FI RSTNVE, SALARY+BONUS+COWM AS TOTAL_PAY
FROM EMPLOYEE
CRDER BY TOTAL_PAY
-- creating an updatable cursor with a FOR UPDATE cl ause
-- to update the start date (PRSTDATE) and the end date (PRENDATE)
-- colums in the PROJECT table
SELECT PRQINO, PRSTDATE, PRENDATE
FROM PRQJECT
FOR UPDATE OF PRSTDATE, PRENDATE
-- set the isolation level to RR for this statenent only
SELECT *
FROM Fl i ght s
VWHERE flight_id BETWEEN ' AA1111" AND ' AA1112'
WTH RR

A SELECT statement returns a ResultSet. A cursor is a pointer to a specific row in
ResultSet. In Java applications, all ResultSets have an underlying associated SQL
cursor, often referred to as the result set's cursor. The cursor can be updatable,

that is, you can update or delete rows as you step through the ResultSet if the

SELECT statement that generated it and its underlying query meet cursor updatability
requirements, as detailed below. The FOR UPDATE clause can be used to ensure a
compilation check that the SELECT statement meets the requiremments of a updatable
cursors, or to limit the columns that can be updated.

Note: The ORDER BY clause allows you to order the results of the SELECT. Without
the ORDER BY clause, the results are returned in random order.

Requirements for updatable cursors and updatable ResultSets
Only simple, single-table SELECT cursors can be updatable. The SELECT statement
for updatable ResultSets has the same syntax as the SELECT statement for updatable
cursors. To generate updatable cursors:

* The SELECT statement must not include an ORDER BY clause.

* The underlying query must be a selectExpression.

* The selectExpression in the underlying query must not include:

« DISTINCT

79

Derby Reference Manual

* Aggregates
* GROUP BY clause
* HAVING clause
* ORDER BY clause

e The FROM clause in the underlying query must not have:
» More than one table in its FROM clause
« Anything other than one table name
» selectExpressions
e Subqueries

« If the underlying query has a WHERE clause, the WHERE clause must not have

subqueries.

Note: Cursors are read-only by default. To produce an updatable cursor besides
meeting the requirements listed above, the concurrency mode for the ResultSet must be
Resul t Set . CONCUR_UPDATABLE or the SELECT statement must have FOR UPDATE
in the FOR clause (see FOR UPDATE clause).

There is no SQL language statement to assign a hame to a cursor. Instead, one can use
the JDBC API to assign names to cursors or retrieve system-generated names. For more
information, see "Naming or accessing the name of a cursor" in the Derby Developer's
Guide.

Statement dependency system

The SELECT depends on all the tables and views named in the query and the
conglomerates (units of storage such as heaps and indexes) chosen for access paths
on those tables. CREATE INDEX does not invalidate a prepared SELECT statement.
A DROP INDEX statement invalidates a prepared SELECT statement if the index is
an access path in the statement. If the SELECT includes views, it also depends on the
dictionary objects on which the view itself depends (see CREATE VIEW statement).

Any prepared UPDATE WHERE CURRENT or DELETE WHERE CURRENT statement
against a cursor of a SELECT depends on the SELECT. Removing a SELECT through
a java.sqgl.Statement.close request invalidates the UPDATE WHERE CURRENT or
DELETE WHERE CURRENT.

The SELECT depends on all aliases used in the query. Dropping an alias invalidates a
prepared SELECT statement if the statement uses the alias.

SET statements

Use the SET statements to set the current deferrability for constraints or to set the current
role, schema, or isolation level.

SET CONSTRAINTS statement
The SET CONSTRAINTS statement sets the deferrability of one or more constraints.

The SET CONSTRAINTS statement allows you to set the constraint mode for one or
more constraints either to DEFERRED or to IMMEDIATE.

When you use the statement to change a constraint from DEFERRED to IMMEDIATE,
the constraint is checked as soon as the statement is executed.

If the check fails, the transaction is not rolled back; an error here constitutes a statement
level error only. Therefore, you can use this statement to check if all constraints are
fulfilled before you attempt to commit the transaction.

A SET CONSTRAINTS statement changes the state of a constraint only until the
transaction ends (or until another, overriding SET CONSTRAINTS statement is issued).

80

Derby Reference Manual

Once the transaction ends, the constraint reverts to the default behavior declared for it at
the time it was created (using a CREATE TABLE or ALTER TABLE statement).

For more information on deferrable constraints, see CONSTRAINT clause and
constraintCharacteristics.

It is recommended that you use SET CONSTRAINTS on table-level constraints. If you
use SET CONSTRAINTS on a column-level constraint, you will need to find the name
of the corresponding index by performing queries against the system tables, which is
cumbersome and requires additional non-portable SQL.

Note: The SET CONSTRAINTS statement is valid only after a database has been fully
upgraded to Derby Release 10.11 or higher. (See "Upgrading a database" in the Derby
Developer's Guide for more information.) This statement has no meaning in a database
that is at Release 10.10 or lower.

Syntax

SET CONSTRAI NTS constrai nt NaneLi st { DEFERRED | | MVEDI ATE }

The constraintNameList is defined as follows:

ALL | constraintName [{ , constraintName }...]
Runtime behavior

If the constraint mode is DEFERRED and a violation is seen at commit time, an exception
is thrown, and the transaction is rolled back.

When you change the constraint mode explicitly to IMMEDIATE using SET
CONSTRAINTS, the constraint is checked, but slightly differently from the way it is
checked at commit time: if a violation is found, a statement-level exception is thrown. You
can use this behavior to verify that constraints are fulfilled before you attempt to commit.

If the constraint mode is IMMEDIATE upon entering a stored routine, and that routine in
a nested connection changes the constraint mode to DEFERRED, any constraints that

are affected are checked upon return from the routine. If the check fails, an exception is
thrown, and the transaction is rolled back.

Constraints with a constraint mode of DEFERRED are also checked if the
application calls XAResource.prepare(Xid). If there is a violation, Derby throws
XAException.XA_RBINTEGRITY, and the XA transaction is rolled back.

Examples

SET CONSTRAI NTS FOO DEFERRED;
SET CONSTRAI NTS ALL DEFERRED;

SET CONSTRAI NTS FOO, BAR | MVEDI ATE;
SET ISOLATION statement
The SET ISOLATION statement changes the isolation level for a user's connection.

Valid isolation levels are SERIALIZABLE, REPEATABLE READ, READ COMMITTED,
and READ UNCOMMITTED.

Issuing this statement always commits the current transaction. The JDBC
java.sgl.Connection.setTransactionlsolation method behaves almost identically to this
command, with one exception: if you are using the embedded driver, and if the call to
java.sgl.Connection.setTransactionlsolation does not actually change the isolation level
(that is, if it sets the isolation level to its current value), the current transaction is not
committed.

81

Derby Reference Manual
For information about isolation levels, see "Locking, concurrency,
and isolation" in the Derby Developer's Guide. For information about
the JDBC java.sql.Connection.setTransactionlsolation method, see
java.sgl.Connection.setTransactionlsolation method.

Syntax

SET [CURRENT | ISOLATION [=]

{
DI RTY READ | READ UNCOWM TTED |

UR |
CS | READ COW TTED | CURSOR STABILITY |
RS |

RR | REPEATABLE READ | SERI ALI ZABLE |
RESET

}
Example

set isolation serializable;
SET ROLE statement
The SET ROLE statement sets the current role for the current SQL context of a session.

You can set a role only if the current user has been granted the role, or if the role has
been granted to PUBLIC.

For more information on roles, see "Using SQL roles" in the Derby Security Guide.

Syntax

SET ROLE { roleNanme | 'stringConstant' | ? | NONE }
If you specify a roleName of NONE, the effect is to unset the current role.

If you specify the role as a string constant or as a dynamic parameter specification (?),
any leading and trailing blanks are trimmed from the string before attempting to use the
remaining (sub)string as a roleName. The dynamic parameter specification can be used
in prepared statements, so the SET ROLE statement can be prepared once and then
executed with different role values. You cannot specify NONE as a dynamic parameter.

Setting a role identifies a set of privileges that is a union of the following:

* The privileges granted to that role
» The union of privileges of roles contained in that role (for a definition of role
containment, see "Syntax for roles" in GRANT statement)

In a session, the current privileges define what the session is allowed to access. The
current privileges are the union of the following:

» The privileges granted to the current user
* The privileges granted to PUBLIC
» The privileges identified by the current role, if set

The SET ROLE statement is not transactional; a rollback does not undo the effect of
setting a role. If a transaction is in progress, an attempt to set a role results in an error.

Examples
SET RCLE reader;

/| These exanpl es show the use of SET ROLE in JDBC st atenents.
/1 The case normal formis visible in the SYS. SYSROLES systemtabl e.

stnt.execute("SET ROLE admi n"); -- case nornal form ADMN
stnt.execute("SET ROLE \"admin\""); -- case normal form admin
stnt. execut e("SET ROLE none"); -- special case

82

Derby Reference Manual

Pr epar edSt at enent ps = conn. pr epar eSt at enent (" SET ROLE ?");

ps.setString(l, " admn "); -- on execute: case normal form ADM N
ps.setString(1l, "\"admin\""); -- on execute: case normal form admn
ps.setString(l, "none"); -- on execute: syntax error
ps.setString(l, "\"none\""); -- on execute: case nornmal form none

SET SCHEMA statement

The SET SCHEMA statement sets the default schema for a connection's session to the
designated schema.

The default schema is used as the target schema for all statements issued from the
connection that do not explicitly specify a schema name.

The target schema must exist for the SET SCHEMA statement to succeed. If the schema
doesn't exist an error is returned. See CREATE SCHEMA statement.

The SET SCHEMA statement is not transactional: If the SET SCHEMA statement is part
of a transaction that is rolled back, the schema change remains in effect.

Syntax

SET [CURRENT | SCHEMA [=] { schemaNane | USER | ? | 'stringConstant' }
I

SET CURRENT SQ.ID [=] { schemaNane | USER | ? | 'stringConstant' }

The schemaName is an identifier with a maximum length of 128. It is case insensitive
unless enclosed in double quotes. (For example, SYS is equivalent to sYs, SYs, and

Ssys.)

USER is the current user. If no current user is defined, the current schema defaults to
the APP schema. (If a user name was specified upon connection, the user's name is the
default schema for the connection, if a schema with that name exists.)

? is a dynamic parameter specification that can be used in prepared statements. The
SET SCHEMA statement can be prepared once and then executed with different schema
values. The schema values are treated as string constants so they are case sensitive.
For example, to designate the APP schema, use the string "APP" rather than "app".

Examples

-- The following are all equivalent and will work
-- assum ng a schema cal |l ed HOTEL

SET SCHEMA HOTEL

SET SCHEMA hot el

SET CURRENT SCHEMA hot el

SET CURRENT SQLI D hot el

SET SCHEMA = hot el

SET CURRENT SCHEMA = hot el

SET CURRENT SQLI D = hot el

SET SCHEMA "HOTEL" -- quoted identifier
SET SCHEMA ' HOTEL' -- quoted string-- This exanpl e produces an error
because

-- lower case hotel won't be found

SET SCHEMA = ' hotel"

-- This exanpl e produces an error because SQ.ID is not
-- allowed w thout CURRENT

SET SQLI D hot el

-- This sets the schema to the current user id

SET CURRENT SCHEMA USER

/1 Here's an exanple of using SET SCHEMA in an Java program
Pr epar edSt at ement ps = conn. Prepar eSt at enent ("set schena ?");
ps.setString(1, "HOTEL");

ps. execut eUpdat e() ;

... do sonme work

ps.setString(1,"APP");

83

Derby Reference Manual
ps. execut eUpdat e() ;
ps.setString(l,"app"); //error - string is case sensitive

/1 no app will be found
ps.setNull (1, Types.VARCHAR); //error - null is not allowed

TRUNCATE TABLE statement

The TRUNCATE TABLE statement quickly removes all content from the specified table
and returns it to its initial empty state.

To truncate a table, you must be either the database owner or the table owner.
You cannot truncate system tables or global temporary tables with this statement.
Syntax

TRUNCATE TABLE t abl eNane

Examples
To truncate the entire Fl i ght s table, use the following statement:

TRUNCATE TABLE Fl i ghts;

UPDATE statement

The UPDATE statement updates the value of one or more columns of a table.

Syntax

UPDATE tableNane [[AS] correlationNane |]
SET col umNane = val ue

[, col umName value]*
[WHERE cl ause]
UPDATE t abl eNane
SET col umNane = val ue
[, columNane = value]*

WHERE CURRENT OF
}

where value is defined as follows:

expressi on | DEFAULT

The first syntactical form, called a searched update, updates the value of one or more
columns for all rows of the table for which the WHERE clause evaluates to TRUE.

The second syntactical form, called a positioned update, updates one or more columns
on the current row of an open, updatable cursor. If columns were specified in the FOR
UPDATE clause of the SELECT statement used to generate the cursor, only those
columns can be updated. If no columns were specified or the select statement did not
include a FOR UPDATE clause, all columns may be updated.

Specifying DEFAULT for the update value sets the value of the column to the default
defined for that table.

The DEFAULT literal is the only value which you can directly assign to a generated
column. Whenever you alter the value of a column referenced by the generationClause of
a generated column, Derby recalculates the value of the generated column.

Example

84

Derby Reference Manual

-- Al the enpl oyees except the manager of
-- departnent (WORKDEPT) 'E21' have been tenporarily reassigned.
-- Indicate this by changing their job (JOB) to NULL and their pay
-- (SALARY, BONUS, COMM values to zero in the EMPLOYEE tabl e.
UPDATE EMPLOYEE

SET JOB=NULL, SALARY=0, BONUS=0, COWM-0

VWHERE WORKDEPT = ' E21' AND JOB <> ' MANAGER

-- PROMOTE the job (JOB) of enployees w thout a specific job title to
MANAGER

UPDATE EMPLOYEE

SET JOB = ' MANAGER

WHERE JOB | S NULL;
/'l Increase the project staffing (PRSTAFF) by 1.5 for all projects

st nt . execut eUpdat e(" UPDATE PROJECT SET PRSTAFF = "

"PRSTAFF + 1.5" +

"WHERE CURRENT OF" + Resul t Set. get CursorNane());

-- Change the job (JOB) of enployee nunber (EMPNO) '000290' in the
EMPLOYEE t abl e
-- to its DEFAULT val ue which is NULL
UPDATE EMPLOYEE
SET JOB = DEFAULT
WHERE EMPNO = ' 000290’

Statement dependency system

A searched update statement depends on the table being updated, all of its
conglomerates (units of storage such as heaps or indexes), all of its constraints, and
any other table named in the WHERE clause or SET expressions. A CREATE or DROP
INDEX statement or an ALTER TABLE statement for the target table of a prepared
searched update statement invalidates the prepared searched update statement.

The positioned update statement depends on the cursor and any tables the cursor
references. You can compile a positioned update even if the cursor has not been opened
yet. However, removing the open cursor with the JDBC close method invalidates the
positioned update.

A CREATE or DROP INDEX statement or an ALTER TABLE statement for the target
table of a prepared positioned update invalidates the prepared positioned update
statement.

Dropping an alias invalidates a prepared update statement if the latter statement uses the
alias.

Dropping or adding triggers on the target table of the update invalidates the update
statement.

SQL clauses

CONSTRAINT clause

A CONSTRAINT clause is an optional part of a CREATE TABLE statement or an ALTER
TABLE statement. A constraint is a rule to which data must conform. Constraint names
are optional.

See CREATE TABLE statement and rrefsqlj81859 for details on those statements.

A CONSTRAINT can be one of the following:
¢ A columnLevelConstraint

Column-level constraints refer to a single column in the table and do not specify a
column name (except check constraints). They refer to the column that they follow.

85

Derby Reference Manual

A tableLevelConstraint

Table-level constraints refer to one or more columns in the table. Table-level
constraints specify the names of the columns to which they apply. Table-level
CHECK constraints can refer to 0 or more columns in the table.

Column constraints include:

NOT NULL

Specifies that this column cannot hold NULL values (constraints of this type are not
nameable).
PRIMARY KEY

Specifies the column that uniquely identifies a row in the table. The identified
columns must be defined as NOT NULL.

Note: If you attempt to add a primary key using ALTER TABLE and any of the
columns included in the primary key contain null values, an error will be generated
and the primary key will not be added. See ALTER TABLE statement for more
information.

UNIQUE

Specifies that values in the column must be unique.
FOREIGN KEY

Specifies that the values in the column must correspond to values in a referenced
primary key or unique key column or that they are NULL.
CHECK

Specifies rules for values in the column.

Table constraints include:

PRIMARY KEY

Specifies the column or columns that uniquely identify a row in the table. NULL
values are not allowed.
UNIQUE

Specifies that values in the columns must be unique.
FOREIGN KEY

Specifies that the values in the columns must correspond to values in referenced
primary key or unique columns or that they are NULL.

Note: If the foreign key consists of multiple columns, and any column is NULL,
the whole key is considered NULL. The insert is permitted no matter what is on the
non-null columns.

CHECK

Specifies a wide range of rules for values in the table.

Column constraints and table constraints have the same function; the difference is

in where you specify them. Table constraints allow you to specify more than one
column in a PRIMARY KEY, UNIQUE, CHECK, or FOREIGN KEY constraint definition.
Column-level constraints (except for check constraints) refer to only one column.

A constraint operates with the privileges of the owner of the constraint. See "Using SQL
standard authorization" and "Privileges on views, triggers, and constraints" in the Derby
Developer's Guide for details.

Deferrable constraints

Constraints can be deferred, meaning that Derby does not check constraints
immediately. By default, a constraint is checked as soon as a statement completes.

86

Derby Reference Manual

Deferrable constraints allow temporary breaches of constraints for more flexible insert
and update operations.

Note: Deferrable constraints are available only after a database has been fully upgraded
to Derby Release 10.11 or higher. (See "Upgrading a database" in the Derby Developer's
Guide for more information.) They cannot be used in a database that is at Release 10.10
or lower.

When a deferrable constraint's constraint mode is DEFERRED before execution of a
statement starts, the checking of the constraint does not take place at the end of the
statement execution as usual, but only when it is explicitly or implicitly requested using
one of the following mechanisms:

« The transaction ends (a commit operation takes place)

» A SET CONSTRAINTS statement which sets the constraint mode to IMMEDIATE is
executed

« Areturn from a stored procedure or function reverts the constraint mode to
IMMEDIATE

The point at which a deferrable constraint is checked is referred to as the deferred
checking time.

If the constraint mode of a constraint is IMMEDIATE before a call to a stored procedure
or function, and the stored procedure or function sets the constraint mode of that
constraint to DEFERRED, the constraint mode is implicitly reset to IMMEDIATE on
return from the stored procedure. This happens because the constraint mode is pushed
on a stack when we enter the stored procedure or function (as are other session

state variables, like the current role). If a constraint violation happens as a result, the
transaction is rolled back and an exception is thrown.

See Referential actions for information about the behavior of deferrable foreign keys.
Primary key constraints
A primary key defines the set of columns that uniquely identifies rows in a table.

When you create a primary key constraint, none of the columns included in the primary
key can have NULL constraints; that is, they must not permit NULL values.

ALTER TABLE ADD PRIMARY KEY allows you to include existing columns in a
primary key if they were first defined as NOT NULL. NULL values are not allowed. If the
column(s) contain NULL values, the system will not add the primary key constraint. See
ALTER TABLE statement for more information.

A table can have at most one PRIMARY KEY constraint.
Unique constraints

A UNIQUE constraint defines a set of columns that uniquely identify rows in a table only
if all the key values are not NULL. If one or more key parts are NULL, duplicate keys are
allowed.

For example, if there is a UNIQUE constraint on col 1 and col 2 of a table, the
combination of the values held by col 1 and col 2 will be unique as long as these values
are not NULL. If one of col 1 and col 2 holds a NULL value, there can be another
identical row in the table.

A table can have multiple UNIQUE constraints.
Foreign key constraints

Foreign keys provide a way to enforce the referential integrity of a database. A foreign
key is a column or group of columns within a table that references a key in some other
table (or sometimes, though rarely, the same table). The foreign key must always include

87

Derby Reference Manual

the columns of which the types exactly match those in the referenced primary key or
unigue constraint.

For a table-level foreign key constraint in which you specify the columns in the table that
make up the constraint, you cannot use the same column more than once.

If there is a column list in the ReferencesSpecification (a list of columns in the referenced
table), it must correspond either to a unique constraint or to a primary key constraint

in the referenced table. The ReferencesSpecification can omit the column list for the
referenced table if that table has a declared primary key.

If there is no column list in the ReferencesSpecification and the referenced table has no
primary key, a statement exception is thrown. (This means that if the referenced table
has only unique keys, you must include a column list in the ReferencesSpecification.)

If the REFERENCES clause contains a CASCADE or SET NULL referential action, the
primary or unique key referenced must not be deferrable.

A foreign key constraint is satisfied if there is a matching value in the referenced unique
or primary key column. If the foreign key consists of multiple columns, the foreign key
value is considered NULL if any of its columns contains a NULL.

Note: Itis possible for a foreign key consisting of multiple columns to allow one of

the columns to contain a value for which there is no matching value in the referenced
columns, per the SQL standard. To avoid this situation, create NOT NULL constraints on
all of the foreign key's columns.

Foreign key constraints and DML

When you insert into or update a table with an enabled foreign key constraint, Derby
checks that the row does not violate the foreign key constraint by looking up the
corresponding referenced key in the referenced table. If the constraint is not satisfied,
Derby rejects the insert or update with a statement exception.

When you update or delete a row in a table with a referenced key (a primary or unique
constraint referenced by a foreign key), Derby checks every foreign key constraint

that references the key to make sure that the removal or modification of the row does
not cause a constraint violation. If removal or modification of the row would cause a
constraint violation, the update or delete is not permitted and Derby throws a statement
exception.

If the constraint mode is IMMEDIATE (the default), Derby performs constraint checks at
the time the statement is executed. If the constraint mode is DEFERRED, the checking is
done later, typically at commit time. See Deferrable constraints for more information.

Backing indexes

UNIQUE, PRIMARY KEY, and FOREIGN KEY constraints generate indexes that
enforce or "back" the constraint (and are sometimes called backing indexes). PRIMARY
KEY constraints generate unique indexes. FOREIGN KEY constraints generate
non-unique indexes. UNIQUE constraints generate unique indexes if all the columns

are non-nullable, and they generate non-unique indexes if one or more columns are
nullable. Therefore, if a column or set of columns has a UNIQUE, PRIMARY KEY, or
FOREIGN KEY constraint on it, you do not need to create an index on those columns for
performance. Derby has already created it for you. See Indexes and constraints.

These indexes are available to the optimizer for query optimization (see CREATE INDEX
statement) and have system-generated names.

You cannot drop backing indexes with a DROP INDEX statement; you must drop the
constraint or the table.

Check constraints

88

Derby Reference Manual

A check constraint can be used to specify a wide range of rules for the contents of

a table. A search condition (which is a boolean expression) is specified for a check
constraint. This search condition must be satisfied for all rows in the table. The search
condition is applied to each row that is modified on an INSERT or UPDATE at the time of
the row modification. The entire statement is aborted if any check constraint is violated.

Requirements for search conditions

If a check constraint is specified as part of a columnDefinition, a column reference
can only be made to the same column. Check constraints specified as part of a table
definition can have column references identifying columns previously defined in the
CREATE TABLE statement.

The search condition must always return the same value if applied to the same values.
Thus, it cannot contain any of the following:
* Dynamic parameters (?)
« Date/Time Functions (CURRENT_DATE, CURRENT_TIME,
CURRENT_TIMESTAMP)
e Subqueries
« User Functions (such as USER, SESSION_USER, CURRENT_USER)

Referential actions

You can specify an ON DELETE clause and/or an ON UPDATE clause, followed by the
appropriate action (CASCADE, RESTRICT, SET NULL, or NO ACTION) when defining
foreign keys. These clauses specify whether Derby should modify corresponding foreign
key values or disallow the operation, to keep foreign key relationships intact when a
primary key value is updated or deleted from a table.

You specify the update and delete rule of a referential constraint when you define the
referential constraint.

The update rule applies when a row of either the parent or dependent table is updated.
The choices are NO ACTION and RESTRICT.

« When a value in a column of the parent table's primary key is updated and the
update rule has been specified as RESTRICT, Derby checks dependent tables
for foreign key constraints. If any row in a dependent table violates a foreign key
constraint, the statement is rolled back.

« If the update rule is NO ACTION, Derby checks the dependent tables for foreign
key constraints after all updates and BEFORE triggers have been executed, but
before AFTER triggers have been executed. If any row in a dependent table violates
a foreign key constraint, the statement is rejected.

When a value in a column of the dependent table is updated, and that value is part of a
foreign key, NO ACTION is the implicit update rule. NO ACTION means that if a foreign
key is updated with a non-null value, the update value must match a value in the parent
table's primary key when the update statement is completed. If the update does not
match a value in the parent table's primary key, the statement is rejected.

The delete rule applies when a row of the parent table is deleted and that row has
dependents in the dependent table of the referential constraint. If rows of the dependent
table are deleted as part of a CASCADE on the parent table, the delete operation on the
parent table is said to be propagated to the dependent table. If the dependent table is
also a parent table, the action specified applies, in turn, to its dependents.

The choices are NO ACTION, RESTRICT, CASCADE, or SET NULL. SET NULL can be
specified only if some column of the foreign key allows null values. If the delete rule is:

« NO ACTION, Derby checks the dependent tables for foreign key constraints after all
deletes and BEFORE triggers have been executed, but before AFTER triggers have

89

Derby Reference Manual

been executed. If any row in a dependent table violates a foreign key constraint, the
statement is rejected.

« RESTRICT, Derby checks dependent tables for foreign key constraints. If any row
in a dependent table violates a foreign key constraint, the statement is rolled back.

« CASCADE, the delete operation is propagated to the dependent table (and that
table's dependents, if applicable).

e SET NULL, each nullable column of the dependent table's foreign key is set to null.

If ON DELETE is not specified, NO ACTION is the implicit delete rule.

Each referential constraint in which a table is a parent has its own delete rule; all
applicable delete rules are used to determine the result of a delete operation. Thus, a
row cannot be deleted if it has dependents in a referential constraint with a delete rule of
RESTRICT or NO ACTION. Similarly, a row cannot be deleted if the deletion cascades to
any of its descendants that are dependents in a referential constraint with the delete rule
of RESTRICT or NO ACTION.

Deleting a row from the parent table involves other tables. Any table involved in a delete
operation on the parent table is said to be delete-connected to the parent table. The
delete can affect rows of these tables in the following ways:

« If the delete rule is RESTRICT or NO ACTION, a dependent table is involved in the
operation but is not affected by the operation. (That is, Derby checks the values
within the table, but does not delete any values.)

« If the delete rule is SET NULL, a dependent table's rows can be updated when a
row of the parent table is the object of a delete or propagated delete operation.

« If the delete rule is CASCADE, a dependent table's rows can be deleted when a
parent table is the object of a delete.

« If the dependent table is also a parent table, the actions described in this list apply,
in turn, to its dependents.

If a foreign key's constraint mode is DEFERRED, an insert (or update of a row that
changes the foreign key) in the child table will be checked at deferred checking time,
notwithstanding the ON DELETE or ON UPDATE referential action specification. If

a row in the parent table is deleted (or updated so as to modify the referenced key),

the behavior depends on the specification of ON DELETE or ON UPDATE. Only if

NO ACTION has been specified is the checking ever deferred. If the primary table's
referenced primary or unique key constraint is also deferred, any delete of a parent row
can lead to a foreign key violation immediately (or at deferred checking time, if the foreign
key is also deferred, as the case may be) when the last of possibly several key duplicates
of the referenced key is deleted or updated.

Statement dependency system

INSERT and UPDATE statements depend on all constraints on the target table.
DELETEs depend on unique, primary key, and foreign key constraints. These statements
are invalidated if a constraint is added to or dropped from the target table.

Examples

-- colum-1level primary key constraint naned OUT_TRAY_PK:
CREATE TABLE SAMP. QUT_TRAY

(

SENT TI MESTAMP,

DESTI NATI ON CHAR(8),

SUBJECT CHAR(64) NOT NULL CONSTRAI NT OUT_TRAY_ PK PRI MARY KEY,
NOTE_TEXT VARCHAR(3000)

)i

-- the table-level prinmary key definition allows you to
-- include two colums in the primary key definition
CREATE TABLE SAMP. SCHED

(

90

Derby Reference Manual

CLASS CODE CHAR(7) NOT NULL,
DAY SNALLINT NOT NULL,

STARTI NG TI ME,

ENDI NG TI ME,

PRI MARY KEY (CLASS CODE, DAY)

)i

-- Use a colum-1|evel constraint for an arithmetic check
-- Use a table-level constraint

-- to nake sure that a enpl oyee's taxes does not

-- exceed the bonus

CREATE TABLE SAMP. ENP

(

EMPNO CHAR(6) NOT NULL CONSTRAI NT EMP_PK PRI MARY KEY,

FI RSTNME CHAR(12) NOT NULL,

M DI NI T VARCHAR(12) NOT NULL,

LASTNAVE VARCHAR(15) NOT NULL,

SALARY DECI MAL(9, 2) CONSTRAI NT SAL_CK CHECK (SALARY >= 10000),
BONUS DECI MAL(9, 2),

TAX DECI MAL(9, 2),

CONSTRAI NT BONUS_CK CHECK (BONUS > TAX)

)

-- use a check constraint to allow only appropriate
-- abbreviations for the neals
CREATE TABLE FL| GHTS

(

FLI GHT_I D CHAR(6) NOT NULL |,

SEGVENT _NUMBER | NTEGER NOT NULL ,

ORI G_Al RPORT CHAR(3),

DEPART_TI ME TI ME,

DEST_Al RPORT CHAR(3),

ARRI VE_TI VE TI ME,

MEAL CHAR(1) CONSTRAI NT MEAL_CONSTRAI NT
CHECK (MEAL IN ("B, 'L', 'D, 'S)),
PRI MARY KEY (FLI GHT I D, SEGVENT NUVBER)
)

-- use the sane check constraint, but
-- make the MEAL_ CONSTRAI NT deferrabl e
CREATE TABLE FLI GHTS

(

FLI GHT_| D CHAR(6) NOT NULL,

SEGVENT _NUMBER | NTEGER NOT NULL,

ORI G_Al RPORT CHAR(3),

DEPART_TI ME TI ME,

DEST_Al RPORT CHAR(3),

ARRI VE_TI ME TI ME,

MEAL CHAR(1) CONSTRAI NT MEAL_CONSTRAI NT
CHECK (MEAL IN ("B, 'L', 'D, 'S))
DEFERRABLE | NI TI ALLY DEFERRED,

PRI MARY KEY (FLIGHT | D, SEGVENT NUVBER)

)
CREATE TABLE METROPCLI TAN

(

HOTEL_|I D | NT NOT NULL CONSTRAI NT HOTELS PK PRI MARY KEY,
HOTEL_NAME VARCHAR(40) NOT NULL,

CITY_ID I NT CONSTRAI NT METRO_FK REFERENCES Cl Tl ES

DE

-- create a table with a table-level primry key constraint
-- and a table-level foreign key constraint
CREATE TABLE FLTAVAI L

(

FLI GHT | D CHAR(6) NOT NULL,
SEGVENT _NUMBER | NT NOT NULL,
FLI GHT_DATE DATE NOT NULL,
ECONOMY_SEATS TAKEN | NT,
BUSI NESS_SEATS TAKEN | NT,

91

Derby Reference Manual

FI RSTCLASS SEATS TAKEN | NT,

CONSTRAI NT FLTAVAI L_PK PRI MARY KEY (FLI GHT_I D, SEGVENT_NUMBER) ,
CONSTRAI NT FLTS_FK

FOREI GN KEY (FLI GHT_I D, SEGVENT_NUVBER)

REFERENCES Fl i ghts (FLI GHT_I D, SEGVENT_NUMBER)

Ik

-- add a unique constraint to a col um

ALTER TABLE SAMP. PRQJECT

ADD CONSTRAI NT P_UC UNI QUE (PROINAME) ;

-- create a table whose city_id columm references the
-- primary key in the Cities table

-- using a colum-1|evel foreign key constraint

CREATE TABLE CONDCS

(

CONDO | D | NT NOT NULL CONSTRAI NT hotel s PK PRI MARY KEY,
CONDO_NAME VARCHAR(40) NOT NULL,

CITY_ID I NT CONSTRAINT city_forei gn_key

REFERENCES Cities ON DELETE CASCADE ON UPDATE RESTRI CT

)i

columnLevelConstraint

[CONSTRAI NT constrai nt Nanme]

{
NOT NULL |

CHECK (searchCondition) |
PRI MARY KEY |
UNI QUE |
REFERENCES cl ause
} [constraintCharacteristics]

A searchCondition is any boolean expression that meets the requirements specified in
Requirements for search conditions.

If a constraintName is not specified, Derby generates a unique constraint name.

tableLevelConstraint

[CONSTRAI NT constrai nt Nanme]
CHECK (searchCondition) |
PRI MARY KEY (si npl eCol ummNane [, sinpleColumNane]1*) |
UNI QUE (sinpl eCol umNane [, sinpleColumNane]1*) |
FOREI GN KEY (si npl eCol uimNane
[, sinpleColumNane]*
REFERENCES cl ause
} [constraintCharacteristics]

A searchCondition is any boolean expression that meets the requirements specified in
Requirements for search conditions.

If a constraintName is not specified, Derby generates a unique constraint name.
REFERENCES clause

REFERENCES t abl eNane [(sinpl eCol umNane [, sinpleColumNane]*)]
[ON DELETE { NO ACTION | RESTRICT | CASCADE | SET NULL }]
[ON UPDATE { NO ACTION | RESTRICT }]

I
[ON UPDATE { NO ACTION | RESTRICT }
[ON DELETE { NO ACTION | RESTRICT | CASCADE | SET NULL }]

constraintCharacteristics

constraintCheckTime [[NOT] DEFERRABLE] |
[NOT] DEFERRABLE [constrai nt CheckTi ne]

92

Derby Reference Manual
The constraintCheckTime is defined as follows:

I NI TI ALLY DEFERRED | | NI TI ALLY | MVEDI ATE

If DEFERRABLE is specified, the constraint is deferrable; otherwise it is not deferrable
unless INITIALLY DEFERRED is specified. To make a constraint from an existing
database deferrable, you must drop and recreate the constraint.

If constraintCheckTime is not specified, INITIALLY IMMEDIATE is implicit.

If INITIALLY DEFERRED is specified and DEFERRABLE is not specified, DEFERRABLE
is implicit. If INITIALLY DEFERRED is specified, NOT DEFERRABLE is not permitted.

The deferrability or the constraintCheckTime (that is, the default checking time) of
a constraint cannot be altered. To change these characteristics, you must drop the
constraint and recreate it.

NOT NULL constraints are not deferrable; all others are deferrable. The NOT NULL
constraint can, however, be dropped and recreated if desired. This will require a full table
scan.

A constraint can be specified as DEFERRABLE or NOT DEFERRABLE, or with a
constraintCheckTime of INITIALLY DEFERRED or INITIALLY IMMEDIATE, only after a
database has been fully upgraded to Derby Release 10.11 or higher. (See "Upgrading a
database" in the Derby Developer's Guide for more information.) These keywords have
no meaning in a database that is at Release 10.10 or lower.

After a full upgrade to Release 10.11 or higher, old constraints on the database will be
converted to NOT DEFERRABLE, the default value.

Note: Deferred constraints sometimes impose extra performance overhead to allow

for the deferred checking. If your application does not require deferred checking, we
recommend that you make constraints NOT DEFERRABLE (the default).

Note: In contrast to constraint checking, the referential actions specified by a referential
constraint are never deferred. In Derby, these actions are RESTRICT, SET NULL

and CASCADE for delete and RESTRICT for update. If NO ACTION is specified, the
referential check can be deferred.

EXTERNAL NAME clause

The EXTERNAL NAME clause specifies the Java method to be called in a CREATE
FUNCTION or CREATE PROCEDURE statement, and it specifies a Java class in a
CREATE AGGREGATE or CREATE TYPE statement.

See CREATE FUNCTION statement, CREATE PROCEDURE statement, CREATE
DERBY AGGREGATE statement, and CREATE TYPE statement for more information.

Syntax

EXTERNAL NAME si ngl eQuot edStri ng
The singleQuotedString cannot have any extraneous spaces.

The method name specified in the CREATE FUNCTION or CREATE PROCEDURE
statement normally takes the following form:

' cl ass_nane. net hod_nane[(par anet er Types)]

The optional parameterTypes specification is needed when the Java signature
determined from the SQL declaration is ambiguous.

93

Derby Reference Manual

If the class is a static nested class, or if the method is in a static nested class, use a
dollar sign ($) as a separator between the outer and static class. For example, suppose
you have the following class and method definition:

public class TestFuncs {
public static final class MyMath {
public static double pow(double base, double power) {
return Mat h. powm(base, power);
}

}

If you use CREATE FUNCTION to bind this pow method to a user-defined function, the
external name should be TestFuncs$MyMath.pow, not TestFuncs.MyMath.pow.

Examples

-- Specify the Mde class as an external nanme
CREATE DERBY AGGREGATE npde FOR | NT
EXTERNAL NAME ' com exanpl e. myapp. aggs. Mode' ;

-- Specify the pow nmethod in the static class MyMath
CREATE FUNCTI ON MYPOAER (X DOUBLE, Y DQOUBLE)
RETURNS DOUBLE

PARAVETER STYLE JAVA

NO SQL LANGUAGE JAVA

EXTERNAL NAME ' Test Funcs$MyMat h. pow

-- create a function to round a Double to a specified nunber of deci nal
pl aces

CREATE FUNCTI ON Doubl eFormat (val ue FLOAT, places | NTECER)

RETURNS FLOAT

PARAMETER STYLE JAVA

LANGUAGE JAVA

EXTERNAL NAME

"utils.Uils.Doubl e(java.l ang. Fl oat, j ava. |l ang. I nteger)'

FOR UPDATE clause
The FOR UPDATE clause is an optional part of a SELECT statement.

Cursors are read-only by default. The FOR UPDATE clause specifies that the cursor
should be updatable, and enforces a check during compilation that the SELECT
statement meets the requirements for an updatable cursor. For more information about
updatability, see Requirements for updatable cursors and updatable ResultSets.

Syntax
FOR

READ ONLY |
FETCH ONLY |
UPDATE [OF sinpl eCol umNane [, sinpleCol ummNane]*]

}

simpleColumnName refers to the names visible for the table specified in the FROM
clause of the underlying query.

Instead of FOR UPDATE, you can specify FOR READ ONLY or its synonym, FOR
FETCH ONLY, to indicate that the result set is not updatable.

Note: The use of the FOR UPDATE clause is not mandatory to obtain an
updatable JDBC ResultSet. As long as the statement used to generate the JDBC
ResultSet meets the requirements for updatable cursor, it is sufficient for the

94

Derby Reference Manual

JDBC Statement that generates the JDBC ResultSet to have concurrency mode
Resul t Set . CONCUR_UPDATABLE for the ResultSet to be updatable.

The optimizer is able to use an index even if the column in the index is being updated.
For information about how indexes affect performance, see Tuning Derby.

Example

SELECT RECEI VED, SOURCE, SUBJECT, NOTE_TEXT FROM SAMP. | N_TRAY FOR UPDATE

FROM clause

The FROM clause is a mandatory clause in a selectExpression.

It specifies the tables (tableExpression) from which the other clauses of the query can
access columns for use in expressions. See selectExpression for more information.

Syntax

FROM t abl eExpression [, tabl eExpression]*

Examples

SELECT Cities.city_id

FROM Citi es

WHERE city_id < 5

-- other types of tabl eExpressions

SELECT TABLENAME, | SI NDEX

FROM SYS. SYSTABLES T, SYS. SYSCONGLOVERATES C

WHERE T. TABLEI D = C. TABLEI D

ORDER BY TABLENAME, | SI NDEX

-- force the join order

SELECT *

FROM Fl i ghts, FlightAvailability

VWHERE Fl i ght Availability.flight_id = Flights.flight_id
AND Fl i ght Avai | ability. segment _nunber = Flights. segnent _nunber
AND Flights.flight id < 'AA1115'

-- a tabl eExpression can be a join operation. Therefore
-- you can have nultiple join operations in a FROM cl ause
SELECT COUNTRI ES. COUNTRY, CITIES. Cl TY_NAME, FLI GHTS. DEST_Al RPORT
FROM COUNTRI ES LEFT QUTER JO N CI TI ES

ON COUNTRI ES. COUNTRY_| SO CODE = Cl TI ES. COUNTRY_| SO_CODE
LEFT QUTER JO N FLI GHTS

ON Cities. Al RPORT = FLI GHTS. DEST_Al RPORT

GROUP BY clause

A GROUP BY clause, part of a selectExpression, groups a result into subsets that have
matching values for one or more columns.

In each group, no two rows have the same value for the grouping column or columns.
NULLs are considered equivalent for grouping purposes. See selectExpression for more
information.

You typically use a GROUP BY clause in conjunction with an aggregate expression.

Using the ROLLUP syntax, you can specify that multiple levels of grouping should be
computed at once.

Syntax

GROUP BY
{

columNanme [, columNane]*

95

Derby Reference Manual
ROLLUP (columNanme [, colummNane]*)

The columnName must be a column from the current scope of the query; there can be
no columns from a query block outside the current scope. For example, if a GROUP BY
clause is in a subquery, it cannot refer to columns in the outer query.

The selectltems in the selectExpression with a GROUP BY clause must contain only
aggregates or grouping columns.

Examples

-- find the average flying_tinmes of flights grouped by
-- airport

SELECT AVG (flying_time), orig_airport

FROM Fl i ghts

GROUP BY orig_airport

SELECT MAX(city_nane), region

FROM Cities, Countries

WHERE Cities.country | SO code = Countries.country_| SO code
GROUP BY region

-- group by an a smallint
SELECT |1 D, AVGE SALARY)
FROM SAMP. STAFF

GROUP BY I D

-- Cet the AVGSALARY and EMPCOUNT col umtms, and the DEPTNO col umm usi ng
the AS cl ause

-- And group by the WORKDEPT col unm using the correl ati on name OTHERS
SELECT OTHERS. WORKDEPT AS DEPTNO,

AVG OTHERS. SALARY) AS AVGSALARY,

COUNT(*) AS EMPCOUNT

FROM SAMP. EMPLOYEE OTHERS

GROUP BY OTHERS. WORKDEPT

-- Conpute sub-totals of Sales_Hi story data, grouping it by Region, by

-- (Region, State), and by (Region, State, Product), as well as conputing
-- an overall total of the sales for all Regions, States, and Products:
SELECT Regi on, State, Product, SUM Sal es) Total _Sal es

FROM Sal es_Hi story

GROUP BY ROLLUP(Regi on, State, Product)

HAVING clause
A HAVING clause restricts the results of a GROUP BY in a selectExpression.

The HAVING clause is applied to each group of the grouped table, much as a WHERE
clause is applied to a select list. If there is no GROUP BY clause, the HAVING clause is
applied to the entire result as a single group. The SELECT clause cannot refer directly to
any column that does not have a GROUP BY clause. It can, however, refer to constants,
aggregates, and special registers.

See selectExpression for more information.

Syntax

HAVI NG bool eanExpr essi on

The booleanExpression can contain only grouping columns (see GROUP BY clause),
columns that are part of aggregate expressions, and columns that are part of a subquery.
For example, the following query is illegal, because the column SALARY is not a
grouping column, it does not appear within an aggregate, and it is not within a subquery:

-- SELECT COUNT(*)

96

Derby Reference Manual

- - FROM SAMP. STAFF
-- GROUP BY ID
-- HAVI NG SALARY > 15000

Aggregates in the HAVING clause do not need to appear in the SELECT list. If the
HAVING clause contains a subquery, the subquery can refer to the outer query block if
and only if it refers to a grouping column.

Example

-- Find the total nunber of econony seats taken on a flight,
-- grouped by airline,

-- only when the group has at |east 2 records.

SELECT SUM ECONOMY_SEATS TAKEN), Al RLI NE_FULL

FROM FLI GHTAVAI LABI LI TY, Al RLI NES

WHERE SUBSTR(FLI GHTAVAI LABI LI TY. FLIGHT_ID, 1, 2) = AIRLINE
GROUP BY Al RLI NE_FULL

HAVI NG COUNT(*) > 1

WINDOW clause

The WINDOW clause allows you to refer to a window by hame when you use a ROW
NUMBER function in a selectExpression.

See ROW_NUMBER function and selectExpression for more information.

Syntax

W NDOW wi ndowNanme AS wi ndowSpeci fi cati on
In a WINDOW clause, windowName is a SQLIdentifier.

Currently, the only valid windowSpecification is a set of empty parentheses (()), which
indicates that the function is evaluated over the entire result set.

Example

SELECT ROW NUMBER() OVER R,
B,
SUM A)
FROM T5 GROUP BY B W NDOWR AS ()

ORDER BY clause

The ORDER BY clause is an optional element of several statements, expressions, and
subqueries.

It can be an element of the following:

* A SELECT statement
» A selectExpression

A VALUES expression
A scalarSubquery

A tableSubquery

It can also be used in an INSERT statement or a CREATE VIEW statement.

An ORDER BY clause allows you to specify the order in which rows appear in the result
set. In subqueries, the ORDER BY clause is meaningless unless it is accompanied

by one or both of the result offset and fetch first clauses or in conjunction with the
ROW_NUMBER function, since there is no guarantee that the order is retained in the
outer result set. It is permissible to combine ORDER BY on the outer query with ORDER
BY in subqueries.

97

Derby Reference Manual
Syntax

ORDER BY { columNane | col umPosition | expression }
[ASC | DESC]
[NULLS FIRST | NULLS LAST]
[, columNanme | colummPosition | expression
[ASC | DESC]
. [NULLS FIRST | NULLS LAST]
columnName
Refers to the names visible from the selectitems in the underlying query of the
SELECT statement. The columnName that you specify in the ORDER BY clause
does not need to be the SELECT list.
columnPosition
An integer that identifies the number of the column in the selectltems in the
underlying query of the SELECT statement. The columnPosition must be greater than
0 and not greater than the number of columns in the result table. In other words, if
you want to order by a column, that column must be specified in the SELECT list.
expression
A sort key expression, such as numeric, string, and datetime expressions. An
expression can also be a row value expression such as a scalarSubquery or case
expression.
ASC
Specifies that the results should be returned in ascending order. If the order is not
specified, ASC is the default.
DESC
Specifies that the results should be returned in descending order.
NULLS FIRST
Specifies that NULL values should be returned before non-NULL values.
NULLS LAST
Specifies that NULL values should be returned after non-NULL values.

Notes

« If SELECT DISTINCT is specified or if the SELECT statement contains a GROUP
BY clause, the ORDER BY columns must be in the SELECT list.

« An ORDER BY clause prevents a SELECT statement from being an updatable
cursor. For more information, see Requirements for updatable cursors and
updatable ResultSets.

« If the null ordering is not specified then the handling of the null values is:

e NULLS LAST if the sort is ASC
* NULLS FIRST if the sortis DESC

« If neither ascending nor descending order is specified, and the null ordering is also
not specified, then both defaults are used and thus the order will be ascending with
NULLS LAST.

Example using a correlation name

You can sort the result set by a correlation name, if the correlation name is specified in
the select list. For example, to return from the CITIES database all of the entries in the
CITY_NAME and COUNTRY columns, where the COUNTRY column has the correlation
name NATION, you specify this SELECT statement:

SELECT CI TY_NAME, COUNTRY AS NATI ON
FROM CI Tl ES
ORDER BY NATI ON

Example using a numeric expression
You can sort the result set by a numeric expression, for example:

98

Derby Reference Manual

SELECT nane, sal ary, bonus FROM enpl oyee
ORDER BY sal ar y+bonus

In this example, the salary and bonus columns are DECIMAL data types.

Example using a function
You can sort the result set by invoking a function, for example:

SELECT i, |en FROM neasures
ORDER BY sin(i)

Example specifying null ordering
You can specify the position of NULL values using the null ordering specification;

SELECT * FROMt1l CORDER BY cl1 DESC NULLS LAST

The result offset and fetch first clauses

The result offset clause provides a way to skip the first N rows in a result set before
starting to return any rows. The fetch first clause, which can be combined with the result
offset clause if desired, limits the number of rows returned in the result set.

The fetch first clause can sometimes be useful for retrieving only a few rows from an
otherwise large result set, usually in combination with an ORDER BY clause. The use
of this clause can give efficiency benefits. In addition, it can make programming the
application simpler.

Syntax

OFFSET { integerLiteral | 2 } { RONV| ROAS }

FETCH { FIRST | NEXT } [integerLiteral | ?] { ROW| ROAM5 } ONLY
ROW is synonymous with ROWS and FIRST is synonymous with NEXT.

For the result offset clause, the value of the integer literal (or the dynamic parameter ?)
must be equal to O (default if the clause is not given), or positive. If it is larger than the
number of rows in the underlying result set, no rows are returned.

For the fetch first clause, the value of the literal (or the dynamic parameter ?) must be 1
or higher. The literal can be omitted, in which case it defaults to 1. If the clause is omitted
entirely, all rows (or those rows remaining if a result offset clause is also given) will be
returned.

Examples

-- Fetch the first rowof T
SELECT * FROM T FETCH FI RST ROW ONLY

-- Sort T using colum |, then fetch rows 11 through 20 of the sorted
-- rows (inclusive)
SELECT * FROM T ORDER BY | OFFSET 10 ROAS FETCH NEXT 10 ROAS ONLY

-- Skip the first 100 rows of T

-- If the table has fewer than 101 records, an enpty result set is
-- returned

SELECT * FROM T OFFSET 100 ROWS

-- Use of ORDER BY and FETCH FIRST in a subquery
SELECT DI STI NCT A. ORI G_Al RPORT, B. FLI GHT_| D FROM
(SELECT FLIGHT_I D, ORI G_Al RPORT
FROM FLI GHTS
ORDER BY ORI G_Al RPORT DESC
FETCH FI RST 40 ROAS ONLY)
AS A, FLI GHTAVAI LABILITY AS B

99

Derby Reference Manual
WHERE A. FLIGHT_ID = B. FLIGHT_I D

JDBC (using a dynam c paraneter):
PreparedSt atenent p =
con. prepar eSt at ement (" SELECT * FROM T ORDER BY | OFFSET ? RONS");
p.setint(1, 100);
Resul tSet rs = p.executeQuery();

Note: Make sure to specify the ORDER BY clause if you expect to retrieve a sorted
result set. If you do not use an ORDER BY clause, the result set that is retrieved will
typically have the order in which the records were inserted.

USING clause
The USING clause specifies which columns to test for equality when two tables are
joined.
It can be used instead of an ON clause in the JOIN operations that have an explicit join
clause.

Syntax

USI NG (sinpl eCol umName [, sinpleColumNane]*)

The columns listed in the USING clause must be present in both of the two tables being
joined. The USING clause will be transformed to an ON clause that checks for equality
between the named columns in the two tables.

When a USING clause is specified, an asterisk (*) in the select list of the query will be
expanded to the following list of columns (in this order):

* All the columns in the USING clause

« All the columns of the first (left) table that are not specified in the USING clause

« All the columns of the second (right) table that are not specified in the USING
clause

An asterisk qualified by a table name (for example, COUNTRIES.*) will be expanded to
every column of that table that is not listed in the USING clause.

If a column in the USING clause is referenced without being qualified by a table name,
the column reference points to the column in the first (left) table if the join is an INNER
JOIN or a LEFT OUTER JOIN. Ifitis a RIGHT OUTER JOIN, unqualified references to a
column in the USING clause point to the column in the second (right) table.

Examples

The following query performs an inner join between the COUNTRIES table
and the CITIES table on the condition that COUNTRIES.COUNTRY is equal to
CITIES.COUNTRY:

SELECT * FROM COUNTRI ES JO N CI Tl ES
USI NG (COUNTRY)

The next query is similar to the one above, but it has the additional join condition that
COUNTRIES.COUNTRY_ISO_CODE is equal to CITIES.COUNTRY_ISO_CODE:

SELECT * FROM COUNTRI ES JO N CI TI ES
USI NG (COUNTRY, COUNTRY_| SO _CODE)

WHERE clause

100

Derby Reference Manual

A WHERE clause is an optional part of a selectExpression, DELETE statement, or
UPDATE statement. The WHERE clause lets you select rows based on a boolean
expression.

Only rows for which the selectExpression evaluates to TRUE are returned in the result,
or, in the case of a DELETE statement, deleted, or, in the case of an UPDATE statement,
updated.

Syntax

VWHERE bool eanExpr essi on

Boolean expressions are allowed in the WHERE clause. Most of the general expressions
listed in General expressions can result in a boolean value.

In addition, there are the more common boolean expressions. Specific boolean
operators, listed in SQL boolean operators, take one or more operands; the expressions
return a boolean value.

Example

-- find the flights where no business-cl ass seats have
-- been booked
SELECT *
FROM Fl i ght Avail ability
WHERE busi ness_seats_taken |'S NULL
OR busi ness_seats_taken = 0
-- Join the EMP_ACT and EMPLOYEE t abl es
-- select all the colums fromthe EMP_ACT table and
-- add the enpl oyee's surnane (LASTNAME) fromthe EMPLOYEE table
-- to each row of the result.
SELECT SAMP. EMP_ACT. *, LASTNAME
FROM SAWP. EMP_ACT, SAMP. EMPLOYEE
VWHERE EMP_ACT. EMPNO = EMPLOYEE. EMPNO
-- Determine the enployee nunber and sal ary of sales representatives
-- along with the average salary and head count of their departnents.
-- This query must first create a new col um-nane specified in the AS
cl ause
-- which is outside the fullselect (D NFO
-- in order to get the AVGSALARY and EMPCOUNT col umms,
-- as well as the DEPTNO columm that is used in the WHERE cl ause
SELECT THI S_EMP. EMPNO, THI S_EMP. SALARY, DI NFO. AVGSALARY, DI NFO. EMPCOUNT
FROM EMPLOYEE THI S_EMP,
(SELECT OTHERS. WORKDEPT AS DEPTNO,
AVG OTHERS. SALARY) AS AVGSALARY,
COUNT(*) AS EMPCOUNT
FROM EMPLOYEE OTHERS
GROUP BY OTHERS. WORKDEPT
) AS DI NFO
VWHERE THI S_EMP. JOB = ' SALESREF
AND THI S_EMP. WORKDEPT = DI NFO. DEPTNO

WHERE CURRENT OF clause

The WHERE CURRENT OF clause is a clause in some UPDATE and DELETE
statements. It allows you to perform positioned updates and deletes on updatable
Cursors.

Updatable and/or scrollable JDBC ResultSets can provide a simpler and easier way to
perform these tasks.

See UPDATE statement and DELETE statement for more information on those
statements. For more information about updatable cursors, see SELECT statement.
For information on scrollable and updatable ResultSets, see the Java SE API

101

Derby Reference Manual

documentation on the java.sql.ResultSet interface as well as the information on the Derby
implementation at java.sql.ResultSet interface.

Syntax

WHERE CURRENT OF cur sor Nane

Example

conn. set Aut oConmi t (f al se);

Statenment s = conn. createStatenment();

s. set Cur sor Name(" Al RLI NESRESULTS") ;

Resul tSet rs = s. execut eQuery(
"SELECT Airline, basic_rate " +
"FROM Airlines FOR UPDATE OF basic_rate");

rs.next();

Statenent s2 = conn.createStatenent();

s2. execut eUpdat e("UPDATE Airlines SET basic_rate = basic_rate " +
"+ .25 WHERE CURRENT OF AirlinesResults");

SQL expressions

Syntax for many statements and expressions includes the term expression, or a term for
a specific kind of expression such as tableSubquery. Expressions are allowed in these
specified places within statements.

Some locations allow only a specific type of expression or one with a specific property.
If not otherwise specified, an expression is permitted anywhere the word expression
appears in the syntax. This includes:

* ORDER BY clause

» selectExpression

« UPDATE statement (SET portion)

* VALUES expression

« WHERE clause

Of course, many other statements include these elements as building blocks, and so
allow expressions as part of these elements.

The following tables list all the possible SQL expressions and indicate where the
expressions are allowed.

General expressions

General expressions are expressions that might result in a value of any type. The
following table lists the types of general expressions.

Table 4. General expressions

Expression Type Explanation
Column reference A columnName that references the value of the column
made visible to the expression containing the Column
reference.

You must qualify the columnName by the table name or
correlation name if it is ambiguous.

The qualifier of a columnName must be the correlation
name, if a correlation name is given to a table that is in
a FROM clause. The table name is no longer visible as

102

Derby Reference Manual

Expression Type Explanation

a columnName qualifier once it has been aliased by a
correlation name.

Allowed in selectExpressions, UPDATE statements, and
the WHERE clauses of data manipulation statements.

Constant Most built-in data types typically have constants
associated with them (as shown in Data types).

NULL NULL is an untyped constant representing the unknown
value.

Allowed in CAST expressions or in INSERT VALUES
lists and UPDATE SET clauses. Using it in a CAST
expression gives it a specific data type.

Dynamic parameter A dynamic parameter is a parameter to an SQL
statement for which the value is not specified when
the statement is created. Instead, the statement has a
guestion mark (?) as a placeholder for each dynamic
parameter. See Dynamic parameters.

Dynamic parameters are permitted only in prepared
statements. You must specify values for them before the
prepared statement is executed. The values specified
must match the types expected.

Allowed anywhere in an expression where the data type
can be easily deduced. See Dynamic parameters.

CAST expression Lets you specify the type of NULL or of a dynamic
parameter or convert a value to another type. See CAST
function.

Scalar subquery Subquery that returns a single row with a single column.

See scalarSubquery.

Table subquery Subquery that returns more than one column and more
than one row. See tableSubquery.

Allowed as a tableExpression in a FROM clause and with
EXISTS, IN, and quantified comparisons.

Conditional expression A conditional expression chooses an expression

to evaluate based on a boolean test. Conditional
expressions include the CASE expression, the NULLIF
function, and the COALESCE function.

Boolean expressions

Boolean expressions are expressions that result in boolean values. Most general
expressions can result in boolean values. See Boolean expressions for more information
and a table of operators.

Numeric expressions

Numeric expressions are expressions that result in numeric values. Most of the general
expressions can result in numeric values. Numeric values have one of the following

types:

* BIGINT
+ DECIMAL

103

Derby Reference Manual

 DOUBLE PRECISION
INTEGER

* REAL

* SMALLINT

The following table lists the types of numeric expressions.

Table 5. Numeric expressions

Expression Type

Explanation

+, -, %/, unary + and -
expressions

Evaluate the expected math operation on the
operands. If both operands are the same type,

the result type is not promoted, so the division
operator on integers results in an integer that is the
truncation of the actual numeric result. When types
are mixed, they are promoted as described in Data

types.
Unary + is a noop (i.e., +4 is the same as 4).

Unary - is the same as multiplying the value by -1,
effectively changing its sign.

AVG Returns the average of a set of numeric values.
See AVG function.

SUM Returns the sum of a set of numeric values. See
SUM function.

LENGTH Returns the number of characters in a character or
bit string. See LENGTH function.

LOWER See LCASE or LOWER function.

COUNT Returns the count of a set of values. See COUNT

function, COUNT(*) function.

Character expressions

Character expressions are expressions that result in a CHAR or VARCHAR value. Most
general expressions can result in a CHAR or VARCHAR value. The following table lists

the types of character expressions.

Table 6. Character expressions

Expression Type

Explanation

A CHAR or VARCHAR value that
uses wildcards.

The wildcards % and _ make a character string a
pattern against which the LIKE operator can look
for a match.

Concatenation expression

In a concatenation expression, the concatenation
operator, "||", concatenates its right operand to the
end of its left operand. Operates on character and
bit strings. See Concatenation operator.

Built-in string functions

The built-in string functions act on a String and
return a string. See LTRIM function, LCASE or
LOWER function, RTRIM function, TRIM function,
SUBSTR function, and UCASE or UPPER function.

104

Derby Reference Manual

Expression Type Explanation

USER functions User functions return information about the current
user as a String. See CURRENT_USER function,
SESSION_USER function, and USER function.

Date and time expressions

A date or time expression results in a DATE, TIME, or TIMESTAMP value. Most of the
general expressions can result in a date or time value. The following table lists the types
of date and time expressions.

Table 7. Date and time expressions

Expression Type Explanation
CURRENT_DATE Returns the current date. See CURRENT_DATE
function.
CURRENT_TIME Returns the current time. See CURRENT_TIME
function.
CURRENT_TIMESTAMP Returns the current timestamp. See
CURRENT_TIMESTAMP function.

selectExpression

A selectExpression is the basic SELECT-FROM-WHERE construct used to build a table
value based on filtering and projecting values from other tables.

Syntax

SELECT [DISTINCT | ALL] selectltem]
, selectltem
*
FROM cl ause
WHERE cl ause]
GROUP BY cl ause]
HAVI NG cl ause]
W NDOW cl ause]
ORDER BY cl ause]
result offset clause]
fetch first clause]

e e ey) —

selectltem:

{

*

{ tableNanme | correlationNane } .* |
expressi on [AS sinpl eCol umNane]

}

The SELECT clause contains a list of expressions and an optional quantifier that is
applied to the results of the FROM clause and the WHERE clause. If DISTINCT is
specified, only one copy of any row value is included in the result. Nulls are considered
duplicates of one another for the purposes of DISTINCT. If no quantifier, or ALL, is
specified, no rows are removed from the result in applying the SELECT clause (ALL is
the default).

A selectltem projects one or more result column values for a table result being
constructed in a selectExpression.

105

Derby Reference Manual

For queries that do not select a specific column from the tables involved in the
selectExpression (for example, queries that use COUNT(*)), the user must have at
least one column-level SELECT privilege or table-level SELECT privilege. See GRANT
statement for more information.

The result of the FROM clause is the cross product of the FROM items. The WHERE
clause can further qualify this result.

The WHERE clause causes rows to be filtered from the result based on a boolean
expression. Only rows for which the expression evaluates to TRUE are returned in the
result.

The GROUP BY clause groups rows in the result into subsets that have matching values
for one or more columns. GROUP BY clauses are typically used with aggregates.

If there is a GROUP BY clause, the SELECT clause must contain only aggregates or
grouping columns. If you want to include a non-grouped column in the SELECT clause,
include the column in an aggregate expression. For example:

-- List head count of each departnent,
-- the departnent nunber (WORKDEPT), and the average departnental salary
-- (SALARY) for all departnents in the EMPLOYEE tabl e.
-- Arrange the result table in ascending order by average departnental
-- salary.
SELECT COUNT(*), WORK_DEPT, AVG(SALARY)

FROM EMPLOYEE

GROUP BY WORK_DEPT

ORDER BY 3

If there is no GROUP BY clause, but a selectltem contains an aggregate not in a
subquery, the query is implicitly grouped. The entire table is the single group.

The HAVING clause restricts a grouped table, specifying a search condition (much like a
WHERE clause) that can refer only to grouping columns or aggregates from the current
scope. The HAVING clause is applied to each group of the grouped table. If the HAVING
clause evaluates to TRUE, the row is retained for further processing. If the HAVING
clause evaluates to FALSE or NULL, the row is discarded. If there is a HAVING clause
but no GROUP BY, the table is implicitly grouped into one group for the entire table.

The WINDOW clause allows you to refer to a window by hame when you use a
ROW_NUMBER function in a selectExpression.

The ORDER BY clause allows you to specify the order in which rows appear in the result
set. In subqueries, the ORDER BY clause is meaningless unless it is accompanied

by one or both of the result offset and fetch first clauses or in conjunction with the
ROW_NUMBER function.

The result offset clause provides a way to skip the N first rows in a result set before
starting to return any rows. The fetch first clause, which can be combined with the result
offset clause if desired, limits the number of rows returned in the result set.

Derby processes a selectExpression in the following order:
* FROM clause
« WHERE clause
* GROUP BY (or implicit GROUP BY)
* HAVING clause
* WINDOW clause
* ORDER BY clause
» Result offset clause
» Fetch first clause
* SELECT clause

The result of a selectExpression is always a table.

106

Derby Reference Manual

When a query does not have a FROM clause (when you are constructing a value, not
getting data out of a table), you use a VALUES expression, not a selectExpression. For
example:

VALUES CURRENT_TI MESTAMP

See VALUES expression.

The * wildcard

* expands to all columns in the tables in the associated FROM clause.

table-Name.* and correlation-Name.* expand to all columns in the identified table. That
table must be listed in the associated FROM clause.

Naming columns

You can name a selectltem column using the AS clause. If a column of a selectltem
is not a simple columnReference expression or named with an AS clause, it is given a
generated unique name.

These column names are useful in several cases:
» They are made available on the JDBC ResultSetMetaData.
» They are used as the names of the columns in the resulting table when the
selectExpression is used as a table subquery in a FROM clause.
« They are used in the ORDER BY clause as the column names available for sorting.

Examples

-- This exanpl e shows SELECT- FROM WHERE
-- with an ORDER BY cl ause
-- and correl ati on-Nanmes for the tables.
SELECT CONSTRAI NTNAME, COLUVNNAME
FROM SYS. SYSTABLES t, SYS. SYSCOLUWNS col ,
SYS. SYSCONSTRAI NTS cons, SYS. SYSCHECKS checks
WHERE t. TABLENAME = ' FLI GHTS
AND t. TABLEI D = col . REFERENCEI D
AND t. TABLEI D = cons. TABLEI D
AND cons. CONSTRAI NTI D = checks. CONSTRAI NTI D
ORDER BY CONSTRAI NTNAME
-- This exanpl e shows the use of the DI STINCT cl ause
SELECT DI STI NCT ACTNO
FROM EMP_ACT
-- This exanple shows how to rename an expression
-- Using the EMPLOYEE table, |ist the departnment nunber (WORKDEPT) and
-- maxi mum depart nental sal ary (SALARY) renaned as BOSS
-- for all departments whose maxi mum salary is |ess than the
-- average salary in all other departnments.
SELECT WORKDEPT AS DPT, MAX(SALARY) AS BGCSS
FROM EMPLOYEE EMP_COR
GROUP BY WORKDEPT
HAVI NG MAX(SALARY) < (SELECT AVGE SALARY)
FROM EMPLOYEE
VWHERE NOT WORKDEPT = EMP_COR. WORKDEPT)
ORDER BY BGCSS

tableExpression
A tableExpression specifies a table, view, or function in a FROM clause.
A tableExpression is the source from which a selectExpression selects a result.

A correlation name can be applied to a table in a tableExpression so that its columns
can be qualified with that name. If you do not supply a correlation name, the table name
gualifies the column name. When you give a table a correlation name, you cannot use

107

Derby Reference Manual

the table name to qualify columns. You must use the correlation name when qualifying
column names.

No two items in the FROM clause can have the same correlation name, and no
correlation name can be the same as an unqualified table name specified in that FROM
clause.

In addition, you can give the columns of the table new names in the AS clause. Some
situations in which this is useful:
« When a VALUES expression is used as a tableSubquery, since there is no other
way to name the columns of a VALUES expression.
* When column names would otherwise be the same as those of columns in other
tables; renaming them means you don't have to qualify them.

The query in a tableSubquery appearing in a fromltem can contain multiple columns and
return multiple rows.

For information about the optimizer overrides you can specify, see Tuning Derby.

Syntax

t abl eVi ewOr Funct i onExpr ession |
j oi nOper ati on

Example

-- SELECT froma JO N expressi on
SELECT E. EMPNO, E. LASTNAVE, M EMPNO, M LASTNANME
FROM EMPLOYEE E LEFT OQUTER JO N
DEPARTMENT | NNER JO N EMPLOYEE M
ON MGRNO = M EMPNO
ON E. WORKDEPT = DEPTNO

tableViewOrFunctionExpression

{ tabl eNane | vi ewNane }
[correlationd ause]

{ tabl eSubquery | tabl eFunctionlnvocation }
correl ati onCl ause

}

where correlationClause is

[AS]
correl ati onNane
[(sinpleColumNanme [, sinpleColumNane]*)]

tableFunctionlnvocation:

TABLE functionNane([[functionArg] [, functionArg J*])

Note that when you invoke a table function, you must bind it to a correlation name. For
example:

SELECT s. *

FROM TABLE(external Enpl oyees(42)) s

NEXT VALUE FOR expression

The NEXT VALUE FOR expression retrieves the next value from a sequence generator.

108

Derby Reference Manual
A sequence generator is created with a CREATE SEQUENCE statement.

Syntax

NEXT VALUE FOR sequenceNane

If this is the first use of the sequence generator, the generator returns its START
value. Otherwise, the INCREMENT value is added to the previous value returned by
the sequence generator. The data type of the value is the dataType specified for the
sequence generator.

If the sequence generator wraps around, then one of the following happens:

« If the sequence generator was created using the CYCLE keyword, the sequence
generator is reset to its START value.

« If the sequence generator was created with the default NO CYCLE behavior, Derby
throws an exception.

In order to retrieve the next value of a sequence generator, you or your session's current
role must have USAGE privilege on the generator.

A NEXT VALUE FOR expression may occur in the following places:

e SELECT statement: As part of the expression defining a returned column in a
SELECT list

* VALUES expression: As part of the expression defining a column in a row
constructor (VALUES expression)

« UPDATE statement; As part of the expression defining the new value to which a
column is being set

Only one NEXT VALUE FOR expression is allowed per sequence per statement.

The NEXT VALUE FOR expression is not allowed in any statement which has a
DISTINCT or ORDER BY expression.

The next value of a sequence generator is not affected by whether the user commits or
rolls back a transaction which invoked the sequence generator.

A NEXT VALUE expression may not appear in any of these situations:

« CASE expression
 WHERE clause

* ORDER BY clause

» Aggregate expression

« ROW_NUMBER function
* DISTINCT select list

Examples

VALUES (NEXT VALUE FOR order id);

I NSERT | NTO re_order_table
SELECT NEXT VALUE FCR order_id, order_date, quantity
FROM or der s
WHERE back_order = 1;

UPDATE orders
SET oid = NEXT VALUE FOR order _id
VWHERE expired = 1;

VALUES expression

The VALUES expression allows construction of a row or a table from other values.

109

Derby Reference Manual

A VALUES expression can be used in all the places where a query can, and thus can be
used in any of the following ways:
 As a statement that returns a ResultSet
« Within expressions and statements wherever subqueries are permitted
 As the source of values for an INSERT statement (in an INSERT statement, you
normally use a VALUES expression when you do not use a selectExpression)

Syntax

VALUES (value [, value]1*)
[, (value [, value 1*) 1*

VALUES value [, value]*
} [ORDER BY cl ause]
[result offset clause]
[fetch first clause]

where value is defined as

expression | DEFAULT

The first form constructs multi-column rows. The second form constructs single-column
rows, each expression being the value of the column of the row.

The DEFAULT keyword is allowed only if the VALUES expression is in an INSERT
statement. Specifying DEFAULT for a column inserts the column's default value into the
column. Another way to insert the default value into the column is to omit the column from
the column list and only insert values into other columns in the table.

A VALUES expression that is used in an INSERT statement cannot use an ORDER BY,
result offset, or fetch first clause. However, if the VALUES expression does not contain
the DEFAULT keyword, the VALUES clause can be put in a subquery and ordered, as in
the following statement:

I NSERT INTO t SELECT * FROM (VALUES 'a','c','b') t ORDER BY 1;

Examples

-- 3 rows of 1 colum

VALUES (1), (2),(3)

-- 3 rows of 1 colum

VALUES 1, 2, 3

-- 1 row of 3 columms

VALUES (1, 2, 3)

-- 3 rows of 2 colums

VALUES (1, 21), (2,22), (3, 23)

-- using ORDER BY and FETCH FI RST

VALUES (3,21),(1,22),(2,23) ORDER BY 1 FETCH FI RST 2 ROAS ONLY
-- using ORDER BY and OFFSET

VALUES (3, 21),(1,22),(2,23) ORDER BY 1 OFFSET 1 ROW
-- constructing a derived table

VALUES ('orange', 'orange'), ('apple', 'red),

(' banana', 'yellow)
-- Insert two new departnents using one statenent into the DEPARTMENT
t abl e,

-- but do not assign a manager to the new department.

I NSERT | NTO DEPARTMENT (DEPTNO, DEPTNAME, ADVRDEPT)
VALUES (' B11', 'PURCHASING, 'B01'),

(' E41', ' DATABASE ADM NI STRATION , ' EO01')

-- insert arowwth a DEFAULT val ue for the MAJPRQJ col um

I NSERT | NTO PROJECT (PROINO, PROINAME, DEPTNO, RESPEMP, PRSTDATE,
MAJPRQJ)

VALUES (' PL2101', 'ENSURE COWPAT PLAN , 'BO01', '000020', CURRENT_DATE,
DEFAULT)

110

Derby Reference Manual

-- using a built-in function

VALUES CURRENT_DATE

-- getting the value of an arbitrary expression
VALUES (3*29, 26.0EO0/3)

-- getting a value returned by a built-in function
val ues char (1)

Expression precedence
Precedence of operations from highest to lowest is as follows.

* (), ?, constants (including sign), NULL, columnReference, scalarSubquery, CAST

* LENGTH, CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, and
other built-ins

e Unary + and -

« * /,]| (concatenation)

e Binary + and -

« Comparisons, quantified comparisons, EXISTS, IN, IS NULL, LIKE, BETWEEN, IS

* NOT

* AND

« OR

You can explicitly specify precedence by placing expressions within parentheses.
An expression within parentheses is evaluated before any operations outside the
parentheses are applied to it.

Example

(3+4)*9
(age < 16 OR age > 65) AND enpl oyed = TRUE

Boolean expressions
Boolean expressions are expressions that result in boolean values.

Most of the expressions listed in the table General expressions can result in boolean
values.

Boolean expressions are allowed in the following clauses and operations:

« WHERE clause

» Check constraints (boolean expressions in check constraints have limitations; see
CONSTRAINT clause for details)

¢ CASE expression

* HAVING clause (with restrictions)

* ON clauses of INNER JOIN, LEFT OUTER JOIN, and RIGHT OUTER JOIN
operations

A boolean expression can include a boolean operator or operators. These operators are
listed in the following table.

Table 8. SQL boolean operators

Operator Explanation and Example Syntax

AND, OR, NOT Evaluate any operand(s) that are {

boolean expressions Expressi on AND

expression |
expressi on OR
expression |
NOT expressi on

(orig_airport = 'SFO) OR
(dest_airport = 'GRU)
-- returns true }

111

Derby Reference Manual

Operator

Explanation and Example

Comparisons

<, =, >, <=, >=, <> are applicable to all
of the built-in types.

DATE(' 1998-02-26") <
DATE(' 1998- 03-01")
-- returns true

Note: Derby also accepts the !=
operator, which is not included in the
SQL standard.

Syntax

expressi on
{

<

>

>

<= |

>= |

<>
}

expressi on

NULL

IS NULL, IS NOT

Test whether the result of an
expression is null or not.

WHERE M ddl eName |'S NULL

expression IS [NOT
]
NULL

LIKE

Attempts to match a character
expression to a character pattern,
which is a character string that
includes one or more wildcards.

% matches any number (zero
or more) of characters in the
corresponding position in first
character expression.

__matches one character in the
corresponding position in the
character expression.

Any other character matches only
that character in the corresponding
position in the character expression.

city LIKE 'Sant '

To treat % or _ as constant
characters, escape the character with
an optional escape character, which
you specify with the ESCAPE clause.

SELECT a FROM t abA WHERE a
LIKE ' %_' ESCAPE ' ='

Note: When LIKE comparisons are
used, Derby compares one character
at a time for non-metacharacters.
This is different than the way Derby
processes = comparisons. The
comparisons with the = operator
compare the entire character string
on left side of the = operator with

the entire character string on the
right side of the = operator. For more
information, see "Character-based
collation in Derby" in the Derby
Developer's Guide.

char act er Expr essi on
[NOT] LIKE

char act er Expr essi on
W thW | dCard
[ESCAPE

' escapeCharacter']

BETWEEN

Tests whether the first operand
is between the second and third

expression [NOT]
BETWEEN expr essi on

112

Derby Reference Manual

Operator

Explanation and Example

Syntax

operands. The second operand
must be less than the third operand.
Applicable only to types to which <=
and >= can be applied.

VWHERE booki ng_dat e BETWEEN
DATE(' 1998-02-26') AND
DATE(' 1998- 03-01')

AND expr essi on

Operates on table subquery or list

of values. Returns TRUE if the left
expression's value is in the result of
the table subquery or in the list of
values. Table subquery can return
multiple rows but must return a single
column.

WHERE booki ng_date NOT IN
(SELECT booki ng_dat e FROM
Hot el Booki ngs WHERE
roons_avail able = 0)

{
expression [
I'N
t abl eSubquery

NOT]

I
expression [NOT]
IN (expression
[, expression]*
)
}

EXISTS

Operates on a table subquery.
Returns TRUE if the table subquery
returns any rows, and FALSE if it
returns no rows. A table subquery can
return multiple columns and rows.

WHERE EXI STS
(SELECT *
FROM Fl i ght s
VWHERE dest _airport = 'SFO
AND orig_airport = 'GRU)

[NOT] EXI STS
t abl eSubquery

Quantified
comparison

A guantified comparison is a
comparison operator (<, =, >, <=,
>=, <>) with ALL or ANY or SOME
applied.

Operates on table subqueries, which
can return multiple rows but must
return a single column.

If ALL is used, the comparison must
be true for all values returned by the
table subquery. If ANY or SOME

is used, the comparison must be
true for at least one value of the
table subquery. ANY and SOME are
equivalent.

VWHERE nornal _rate < ALL
(SELECT budget /550 FROM G oups)

expr essi onconpari sond
ALL |
ANY |
SOME

}
t abl eSubquery

per at or

CASE expression

The CASE expression can be used for conditional expressions in Derby.

113

Derby Reference Manual
See SQL expressions for more information on expressions.

Syntax

You can place a CASE expression anywhere an expression is allowed. It chooses an
expression to evaluate based on a boolean test.

Derby supports three kinds of CASE expressions, which we refer to as a searched CASE
expression, a simple CASE expression, and an extended CASE expression.

The syntax of a searched CASE expression is as follows:

CASE
WHEN bool eanExpr essi on THEN t henExpr essi on
[WHEN bool eanExpressi on THEN t henExpression]*
[ELSE el seExpression]

END

The syntax of a simple CASE expression is as follows:

CASE val ueExpr essi on
WHEN val ueExpression [, val ueExpression]* THEN t henExpr essi on
[WHEN val ueExpression [, val ueExpression]* THEN t henExpression]*
[ELSE el seExpression]

END

A valueExpression is an expression that resolves to a single value.

For both searched and simple CASE expressions, both thenExpression and
elseExpression are defined as follows:

NULL | val ueExpression

The thenExpression and elseExpression must be type-compatible. For built-in types, this
means that the types must be the same or that a built-in broadening conversion must
exist between the types.

The syntax of an extended CASE expression is as follows:

CASE val ueExpr essi on
VWHEN whenOperand [, whenOperand]* THEN t henExpression
[WHEN whenOperand [, whenOperand]* THEN t henExpression]*
[ELSE el seExpression]

END

A whenOperand is defined as follows:

val ueExpr essi on

I
conpari sonQper at or expr essi on |
IS[NOT] NULL |
[NOT] LIKE character Expressi onWthW | dCard [ESCAPE ' escapeCharacter']

I

[NOTr] BETWEEN expression AND expression |

[NOT] IN tabl eSubquery |

[NOT] IN(expression [, expression

1*)

I
conpari sonOperator { ALL | ANY | SOVE } tabl eSubquery
A comparisonOperator is defined as follows:
{<l=1>|<|>]| <}

For details on LIKE expressions, see Boolean expressions.

For all types of CASE expressions, if an ELSE clause is not specified, ELSE NULL is
implicit.

114

Derby Reference Manual
Example

-- searched CASE expression
-- returns 3
VALUES CASE WHEN 1=1 THEN 3 ELSE 4 END

-- sinple CASE expression, equivalent to previ ous expression
-- returns 3
VALUES CASE 1 WHEN 1 THEN 3 ELSE 4 END

-- searched CASE expression

-- returns 7
VALUES
CASE
WHEN 1 = 2 THEN 3
WHEN 4 = 5 THEN 6
ELSE 7
END

-- sinple CASE expression
-- returns 'two'
VALUES
CASE 1+1
WHEN 1 THEN ' one'
VWHEN 2 THEN 't wo'

ELSE ' many'
END
-- sinple CASE expression
-- returns 'odd', 'even', 'big
SELECT
CASE X
WHEN 1, 3, 5, 7, 9 THEN 'odd'
WHEN 2, 4, 6, 8, 10 THEN 'even'
ELSE ' big
END
FROM

(VALUES 5, 8, 12) AS V(X)

-- extended CASE expression
-- returns ('long', 182), ('medium, 340), ('short', 20)
SELECT DI STANCE, COUNT(*)
FROM (SELECT
CASE M LES
WHEN < 250 THEN ' short'
VWHEN BETWEEN 250 AND 2000 THEN ' nedi um
VWHEN > 2000 THEN ' ong'
END
FROM FLI GHTS) AS F(DI STANCE)
GROUP BY DI STANCE

Dynamic parameters

You can prepare statements that are allowed to have parameters for which the value is
not specified when the statement is prepared using PreparedStatement methods in the
JDBC API. These parameters are called dynamic parameters and are represented by a
guestion mark (?).

The JDBC API documentation refers to dynamic parameters as IN, INOUT, or OUT
parameters. In SQL, they are always IN parameters.

You must specify values for dynamic parameters before executing the statement. The
values specified must match the types expected.

Dynamic parameters example

Prepar edSt at enent ps2 = conn. prepar eSt at ement (

115

Derby Reference Manual

"UPDATE Hot el Avail ability SET roons_available =" +
"(roons_available - ?) WHERE hotel _id = ? " +
"AND booki ng_date BETWEEN ? AND ?");
-- this sanple code sets the values of dynam c paraneters
-- to be the val ues of program vari abl es
ps2.setlnt (1, nunber Roons);
ps2.setInt(2, theHotel.hotelld);
ps2.setDate(3, arrival);
ps2.set Date(4, departure);
updat eCount = ps2. execut eUpdate();

Where dynamic parameters are allowed

You can use dynamic parameters anywhere in an expression where their data type can
be easily deduced.

1. Use as the first operand of BETWEEN is allowed if one of the second and third
operands is not also a dynamic parameter. The type of the first operand is assumed
to be the type of the non-dynamic parameter, or the union result of their types if
both are not dynamic parameters.

VWHERE ? BETWEEN DATE(' 1996-01-01') AND ?
-- types assuned to be DATE

2. Use as the second or third operand of BETWEEN is allowed. Type is assumed to
be the type of the left operand.

VWHERE DATE(' 1996-01-01') BETWEEN ? AND ?
-- types assuned to be DATE

3. Use as the left operand of an IN list is allowed if at least one item in the list is not
itself a dynamic parameter. Type for the left operand is assumed to be the union
result of the types of the non-dynamic parameters in the list.

WHERE ? NOT IN (?, ?, 'Santiago')
-- types assuned to be CHAR

4. Use in the values list in an IN predicate is allowed if the first operand is not a
dynamic parameter or its type was determined in the previous rule. Type of the
dynamic parameters appearing in the values list is assumed to be the type of the
left operand.

WHERE Fl oat Col utm IN (?, ?
?)

-- types assuned to be FLOAT

5. For the binary operators +, -, *, /, AND, OR, <, >, =, <>, <=, and >=, use of a
dynamic parameter as one operand but not both is permitted. Its type is taken from
the other side.

)

WHERE ? < CURRENT_TI MESTAMP
-- type assuned to be a TI MESTAMP

6. Use in a CAST is always permitted. This gives the dynamic parameter a type.

CALL val ueOf (CAST (? AS VARCHAR(10)))

7. Use on either or both sides of LIKE operator is permitted. When used on the left, the
type of the dynamic parameter is set to the type of the right operand, but with the
maximum allowed length for the type. When used on the right, the type is assumed
to be of the same length and type as the left operand. (LIKE is permitted on CHAR
and VARCHAR types; see Concatenation operator for more information.)

WHERE ? LIKE ' Santi %
-- type assumed to be CHAR with a |l ength of
-- java.l ang. I nt eger. MAX_VALUE

8. A ? parameter is allowed by itself on only one side of the || operator. That is, "? || ?"
is not allowed. The type of a ? parameter on one side of a || operator is determined
by the type of the expression on the other side of the || operator. If the expression

116

Derby Reference Manual

10.

11.

12.

13.

14.

15.

on the other side is a CHAR or VARCHAR, the type of the parameter is VARCHAR
with the maximum allowed length for the type. If the expression on the other side
is a CHAR FOR BIT DATA or VARCHAR FOR BIT DATA type, the type of the
parameter is VARCHAR FOR BIT DATA with the maximum allowed length for the

type.

SELECT BI Tcolum || ?

FROM User Tabl e

-- Type assuned to be CHAR FOR BI T DATA of |ength specified for
Bl Tcol unm

In a conditional expression, which uses a ?, use of a dynamic parameter (which is
also represented as a ?) is allowed. The type of a dynamic parameter as the first
operand is assumed to be boolean. Only one of the second and third operands can
be a dynamic parameter, and its type will be assumed to be the same as that of the
other (that is, the third and second operand, respectively).

SELECT c¢1 IS NULL ? ? : cl

-- allows you to specify a "default" value at execution tine
-- dynam c paraneter assunmed to be the type of cl

-- you cannot have dynani c paraneters on both sides

-- of the :

A dynamic parameter is allowed as an item in the values list or select list of an
INSERT statement. The type of the dynamic parameter is assumed to be the type of
the target column.

I NSERT | NTO t VALUES (?)

-- dynam c paraneter assunmed to be the type

-- of the only colum in table t

I NSERT I NTO t SELECT ?

FROM t 2

-- not allowed

A ? parameter in a comparison with a subquery takes its type from the expression

being selected by the subquery. For example:

SELECT *
FROM t ab1
WHERE ? = (SELECT x FROM t ab2)

SELECT *

FROM t abl

WHERE ? = ANY (SELECT x FROM t ab2)

-- In both cases, the type of the dynam c paranmeter is
-- assunmed to be the sane as the type of tab2.x.

A dynamic parameter is allowed as the value in an UPDATE statement. The type of
the dynamic parameter is assumed to be the type of the column in the target table.

UPDATE t2 SET c2 =? -- type is assuned to be type of c2
Dynamic parameters are allowed as the operand of the unary operators - or +. For
example:

CREATE TABLE t1 (cl11l INT, cl12 SMALLINT, c13 DOUBLE, cl14 CHAR(3))
SELECT * FROM t1l WHERE c11 BETWEEN -? AND +?

-— The type of both of the unary operators is |INT

-- based on the context in which they are used (that is,

-- because c11 is INT, the unary paraneters al so get the

-- type |NT.

LENGTH allow a dynamic parameter. The type is assumed to be a maximum length
VARCHAR type.

SELECT LENGTH(?)
Qualified comparisons.

? = SOVE (SELECT 1 FROMt)

117

Derby Reference Manual

-- is valid. Dynanmic paraneter assuned to be | NTEGER type
1 = SOME (SELECT ? FROM t)
-- is valid. Dynam c paraneter assuned to be | NTEGER type.
16. A dynamic parameter is allowed as the left operand of an IS expression and is

assumed to be a boolean.

Once the type of a dynamic parameter is determined based on the expression it is in,
that expression is allowed anywhere it would normally be allowed if it did not include a
dynamic parameter.

JOIN operations
The JOIN operations perform joins between two tables.

The JOIN operations are among the possible tableExpressions in a FROM clause. (You
can also perform a join between two tables using an explicit equality test in a WHERE
clause, suchas WHERE t1.col 1 = t2.col 2.)

The JOIN operations are:
¢ INNER JOIN operation

Specifies a join between two tables with an explicit join clause.
e LEFT OUTER JOIN operation

Specifies a join between two tables with an explicit join clause, preserving
unmatched rows from the first table.
¢ RIGHT OUTER JOIN operation

Specifies a join between two tables with an explicit join clause, preserving
unmatched rows from the second table.
¢ CROSS JOIN operation

Specifies a join that produces the Cartesian product of two tables. It has no explicit
join clause.
* NATURAL JOIN operation

Specifies an inner or outer join between two tables. It has no explicit join clause.
Instead, one is created implicitly using the common columns from the two tables.

In all cases, you can specify additional restrictions on one or both of the tables being
joined in outer join clauses or in the WHERE clause.

JOIN expressions and query optimization

For information on which types of joins are optimized, see Tuning Derby.

INNER JOIN operation

An INNER JOIN is a JOIN operation that allows you to specify an explicit join clause.

Syntax

tabl eExpression [INNER] JO N t abl eExpressi on

ON bool eanExpr essi on |
USI NG cl ause

}
You can specify the join clause by specifying ON with a boolean expression.

The scope of expressions in the ON clause includes the current tables and any tables in
outer query blocks to the current SELECT. In the following example, the ON clause refers
to the current tables:

118

Derby Reference Manual

SELECT *
FROM SAWP. EMPLOYEE | NNER JO N SAMP. STAFF
ON EMPLOYEE. SALARY < STAFF. SALARY

The ON clause can reference tables not being joined and does not have to reference
either of the tables being joined (though typically it does).

Examples

-- Join the EMP_ACT and EMPLOYEE t abl es
-- select all the colums fromthe EMP_ACT table and
-- add the enpl oyee's surnane (LASTNAME) fromthe EMPLOYEE table
-- to each row of the result
SELECT SAMP. EMP_ACT. *, LASTNAME
FROM SAMP. EMP_ACT JO N SAMP. EMPLOYEE
ON EMP_ACT. EMPNO = EMPLOYEE. EMPNO
-- Join the EMPLOYEE and DEPARTMENT t abl es,
-- select the enployee nunmber (EMPNO),
-- enpl oyee surnanme (LASTNAME),
-- departnent nunber (WORKDEPT in the EMPLOYEE tabl e and DEPTNO i n the
- - DEPARTMENT t abl e)
-- and departnent nane (DEPTNAME)
-- of all enployees who were born (BI RTHDATE) earlier than 1930.
SELECT EMPNO, LASTNAME, WORKDEPT, DEPTNAME
FROM SAMP. EMPLOYEE JO N SAMP. DEPARTMENT
ON WORKDEPT = DEPTNO
AND YEAR(Bl RTHDATE) < 1930

-- Anot her exanple of "generating" new data val ues,

-- using a query which selects froma VALUES cl ause (which is an
-- alternate formof a fullselect).

-- This query shows how a table can be derived called "X"
-- having 2 colums "R1" and "R2" and 1 row of data
SELECT *

FROM (VALUES (3, 4), (1, 5), (2, 6))

AS VALUESTABLEL(Cl, C2)

JON (VALUES (3, 2), (1, 2),

(0, 3)) AS VALUESTABLE2(c1, c2)

ON VALUESTABLEL. c1 = VALUESTABLE2. cl

-- This results in:

.- a | C2 | c1 |2
-~ 3 | 4 |3 | 2
-1 |5 |1 | 2

-- List every departnent with the enpl oyee nunber and
-- last name of the nanager

SELECT DEPTNO, DEPTNAME, EMPNO, LASTNAME
FROM DEPARTMENT | NNER JO N EMPLOYEE
ON MGRNO = EMPNO

-- List every enployee nunmber and | ast nane
-- with the enpl oyee nunber and |ast nanme of their manager
SELECT E. EMPNO, E. LASTNAME, M EMPNO, M LASTNAME
FROM EMPLOYEE E | NNER JO N
DEPARTMENT | NNER JO N EMPLOYEE M
ON MERNO = M EMPNO
ON E. WORKDEPT = DEPTNO

LEFT OUTER JOIN operation

A LEFT OUTER JOIN is one of the JOIN operations that allow you to specify a join
clause. It preserves the unmatched rows from the first (left) table, joining them with a
NULL row in the shape of the second (right) table.

Syntax

119

Derby Reference Manual
t abl eExpression LEFT [QUTER] JO N t abl eExpr essi on

ON bool eanExpressi on |
USI NG cl ause

}

The scope of expressions in either the ON clause includes the current tables and any
tables in query blocks outer to the current SELECT. The ON clause can reference tables
not being joined and does not have to reference either of the tables being joined (though
typically it does).

Example 1

-- match cities to countries in Asia

SELECT CI Tl ES. COUNTRY, CITIES. Cl TY_NAME, REG ON

FROM Countri es

LEFT OQUTER JO N Cities

ON CI Tl ES. COUNTRY_I SO _CODE = COUNTRI ES. COUNTRY_| SO_CODE
VHERE REG ON = ' Asi a'

-- use the synonynous syntax, LEFT JON, to achi eve exactly
-- the sane results as in the exanpl e above

SELECT COUNTRI ES. COUNTRY, CI Tl ES. Cl TY_NAME, REG ON
FROM COUNTRI ES

LEFT JON C TIES

ON CI TI ES. COUNTRY_| SO CODE = COUNTRI ES. COUNTRY_| SO _CODE
VWHERE REG ON = ' Asi a'

Example 2

-- Join the EMPLOYEE and DEPARTMENT t abl es,

-- select the enpl oyee number (EMPNO),

-- enpl oyee surnanme (LASTNAME),

-- departnment nunber (WORKDEPT in the EMPLOYEE tabl e

-- and DEPTNO i n t he DEPARTMENT t abl e)

-- and departnent nane (DEPTNAME)

-- of all enployees who were born (Bl RTHDATE) earlier than 1930

SELECT EMPNO, LASTNAME, WORKDEPT, DEPTNANME
FROM SAMP. EMPLOYEE LEFT QUTER JO N SAMP. DEPARTMENT
ON WORKDEPT = DEPTNO
AND YEAR(BI RTHDATE) < 1930
-- List every departnent with the enpl oyee nunmber and
-- last nanme of the nmanager,
-- including departnents w t hout a nanager
SELECT DEPTNO, DEPTNAME, EMPNO, LASTNAMVE

FROM DEPARTMENT LEFT OUTER JO N EMPLOYEE
ON MGRNO = EMPNO

RIGHT OUTER JOIN operation

A RIGHT OUTER JOIN is one of the JOIN operations that allow you to specify a JOIN
clause. It preserves the unmatched rows from the second (right) table, joining them with a
NULL in the shape of the first (left) table.

B LEFT OUTER JOIN A is equivalent to A RIGHT OUTER JOIN B, with the columns in a
different order.

Syntax

t abl eExpression RIGHT [QUTER] JO N t abl eExpressi on

ON bool eanExpressi on |

120

Derby Reference Manual

USI NG cl ause
}

The scope of expressions in the ON clause includes the current tables and any tables in
guery blocks outer to the current SELECT. The ON clause can reference tables not being
joined and does not have to reference either of the tables being joined (though typically it
does).

Example 1

-- get all countries and corresponding cities, including
-- countries without any cities

SELECT COUNTRI ES. COUNTRY, Cl TI ES. CI TY_NAVE

FROM CI Tl ES

Rl GHT OUTER JO N COUNTRI ES

ON Cl TI ES. COUNTRY_| SO _CODE = COUNTRI ES. COUNTRY_| SO CODE

-- get all countries in Africa and corresponding cities, including
-- countries without any cities

SELECT COUNTRI ES. COUNTRY, CI TI ES. Cl TY_NAME

FROM CI Tl ES

RI GHT OQUTER JO N COUNTRI ES

ON CI TI ES. COUNTRY_| SO CODE = COUNTRI ES. COUNTRY_| SO_CODE
WHERE Countries.region = 'Africa'

-- use the synonynous syntax, RIGHT JO N, to achi eve exactly
-- the sanme results as in the exanpl e above

SELECT COUNTRI ES. COUNTRY, CI Tl ES. Cl TY_NAME

FROM CI Tl ES

RI GHT JO N COUNTRI ES

ON ClI Tl ES. COUNTRY_| SO CODE = COUNTRI ES. COUNTRY_| SO _CODE
WHERE Countries.region = "'Africa'

Example 2

-- a tabl eExpression can be a join operation. Therefore

-- you can have multiple join operations in a FROM cl ause
-- List every enployee nunber and | ast nane

-- with the enpl oyee nunber and | ast name of their manager

SELECT E. EMPNO, E. LASTNAME, M EMPNO, M LASTNAME
FROM EMPLOYEE E RI GAT QUTER JO N
DEPARTMENT RI GHT OUTER JO N EMPLOYEE M

ON MGRNO = M EMPNO
ON E. WORKDEPT = DEPTNO

CROSS JOIN operation

A CROSS JOIN is a JOIN operation that produces the Cartesian product of two tables.
Unlike other JOIN operators, it does not let you specify a join clause. You may, however,
specify a WHERE clause in the SELECT statement.

Syntax
t abl eExpressi on CROSS JO N
{
t abl eVi ewOr Funct i onExpr essi on |

(tabl eExpression)
}

Examples

The following SELECT statements are equivalent:

121

Derby Reference Manual
SELECT * FROM CI TI ES CROSS JAO N FLI GHTS

SELECT * FROM CI TIES, FLI GHTS

The following SELECT statements are equivalent:

SELECT * FROM CI TI ES CROSS JA N FLI GHTS
WHERE CI Tl ES. Al RPORT = FLI GHTS. ORI G_Al RPORT

SELECT * FROM CI TIES I NNER JO N FLI GHTS
ON CI TI ES. Al RPORT = FLI GHTS. ORI G_Al RPORT

The following example is more complex. The ON clause in this example is associated
with the LEFT OUTER JOIN operation. Note that you can use parentheses around a
JOIN operation.

SELECT * FROM Cl TI ES LEFT OUTER JO N
(FLI GHTS CROSS JO N COUNTRI ES)
ON CI TI ES. Al RPORT = FLI GHTS. ORI G_Al RPORT
WHERE COUNTRI ES. COUNTRY_| SO CODE = ' US

A CROSS JOIN operation can be replaced with an INNER JOIN where the join clause
always evaluates to true (for example, 1=1). It can also be replaced with a sub-query. So
equivalent queries would be:

SELECT * FROM Cl TI ES LEFT OUTER JO N
FLI GHTS | NNER JO N COUNTRI ES ON 1=1
ON CI TI ES. Al RPORT = FLI GHTS. ORI G_Al RPORT
WHERE COUNTRI ES. COUNTRY_| SO CODE = ' US

SELECT * FROM Cl TI ES LEFT OUTER JO N
(SELECT * FROM FLI GHTS, COUNTRIES) S

ON CI TI ES. Al RPORT = S. ORI G_Al RPORT

WHERE S. COUNTRY_| SO CCDE = ' US'

NATURAL JOIN operation

A NATURAL JOIN is a JOIN operation that creates an implicit join clause for you based
on the common columns in the two tables being joined. Common columns are columns
that have the same name in both tables.

A NATURAL JOIN can be an INNER join, a LEFT OUTER join, or a RIGHT OUTER join.
The default is INNER join.

If the SELECT statement in which the NATURAL JOIN operation appears has an asterisk
(*) in the select list, the asterisk will be expanded to the following list of columns (in this
order):

 All the common columns
» Every column in the first (left) table that is not a common column
» Every column in the second (right) table that is not a common column

An asterisk qualified by a table name (for example, COUNTRIES.*) will be expanded to
every column of that table that is not a common column.

If a common column is referenced without being qualified by a table name, the column
reference points to the column in the first (left) table if the join is an INNER JOIN or a
LEFT OUTER JOIN. Ifitis a RIGHT OUTER JOIN, unqualified references to a common
column point to the column in the second (right) table.

Syntax

t abl eExpression NATURAL [{ LEFT | RIGHT } [OQUTER] | INNER] JON
{

122

Derby Reference Manual

t abl eVi ewOr Funct i onExpr essi on
(tabl eExpression)
}

Examples

If the tables COUNTRIES and CITIES have two common columns named COUNTRY
and COUNTRY_ISO_CODE, the following two SELECT statements are equivalent:

SELECT * FROM COUNTRI ES NATURAL JO N CITI ES

SELECT * FROM COUNTRI ES JOI N CI Tl ES
USI NG (COUNTRY, COUNTRY_| SO_CODE)

The following example is similar to the one above, but it also preserves unmatched rows
from the first (left) table:

SELECT * FROM COUNTRI ES NATURAL LEFT JO N CITI ES

SQL queries
query
A query creates a virtual table based on existing tables or constants built into tables.
Syntax
(query

[ORDER BY cl ause]
[result offset clause]
[fetch first clause]

) |

query |INTERSECT [ALL | DISTINCT] query |
query EXCEPT [ALL | DI STINCT] query |
query UNION [ALL | DI STINCT] query |

sel ect Expressi on | VALUES expression

}

You can arbitrarily put parentheses around queries, or use the parentheses to control
the order of evaluation of the INTERSECT, EXCEPT, or UNION operations. These
operations are evaluated from left to right when no parentheses are present, with the
exception of INTERSECT operations, which would be evaluated before any UNION or
EXCEPT operations.

Duplicates in UNION, INTERSECT, and EXCEPT ALL results

The ALL and DISTINCT keywords determine whether duplicates are eliminated from the
result of the operation. If you specify the DISTINCT keyword, then the result will have

no duplicate rows. If you specify the ALL keyword, then there may be duplicates in the
result, depending on whether there were duplicates in the input. DISTINCT is the default,
so if you don't specify ALL or DISTINCT, the duplicates will be eliminated. For example,
UNION builds an intermediate ResultSet with all of the rows from both queries and
eliminates the duplicate rows before returning the remaining rows. UNION ALL returns all
rows from both queries as the result.

Depending on which operation is specified, if the number of copies of a row in the left
table is L and the number of copies of that row in the right table is R, then the number of
duplicates of that particular row that the output table contains (assuming the ALL keyword
is specified) is:

« UNION: (L+R).

e EXCEPT: the maximum of (L - R) and O (zero).

123

Derby Reference Manual
* INTERSECT: the minimum of L and R.

Examples

-- a Sel ect expression
SELECT *
FROM ORG

-- a subquery
SELECT *
FROM (SELECT CLASS_CODE FROM CL_SCHED) AS CS

-- a subquery
SELECT *
FROM (SELECT CLASS_CODE FROM CL_SCHED) AS CS (CLASS_CODE)

-- a UN ON
-- returns all rows from col ums DEPTNUVMB and MANAGER
-- in table ORG

-- and (1,2) and (3,4)

-- DEPTNUMB and MANAGER are smallint col ums
SELECT DEPTNUMB, MANAGER

FROM ORG

UNI ON ALL

VALUES (1,2), (3,4)

-- a val ues expression
VALUES (1, 2, 3)

-- Use of ORDER BY and FETCH FIRST in a subquery
SELECT DI STI NCT A. ORI G_Al RPORT, B. FLI GHT_I D FROM
(SELECT FLIGHT_I D, ORI G_Al RPORT
FROM FLI GHTS
CORDER BY ORI G_Al RPORT DESC
FETCH FI RST 40 ROA5 ONLY)
AS A, FLI GHTAVAI LABILITY AS B
WHERE A. FLIGHT ID = B.FLIGHT_ID

-- List the enpl oyee nunbers (EMPNO) of all enployees in the EMPLOYEE
-- tabl e whose departnment nunber (WORKDEPT) either begins with 'E or
-- who are assigned to projects in the EMP_ACT tabl e
-- whose project nunber (PROINO) equals ' MA2100', 'MA2110', or 'MA2112'
SELECT EMPNO
FROM EMPLOYEE
VWHERE WORKDEPT LI KE ' E%
UNI ON
SELECT EMPNO
FROM EMP_ACT
VWHERE PRQINO | N(' MA2100', ' MA2110', 'MA2112')
-- Make the same query as in the previ ous exanpl e
-- and "tag" the rows fromthe EMPLOYEE table with 'enp' and
-- the rows fromthe EMP_ACT table with 'enp_act'.
-- Unlike the result fromthe previous exanpl e,
-- this query may return the sane EMPNO nore than once,
-- identifying which table it came from by the associated
SELECT EMPNO, 'enp'
FROM EMPLOYEE
VWHERE WORKDEPT LI KE ' E%
UNI ON
SELECT EMPNO, 'enp_act' FROM EMP_ACT
VWHERE PRQINO | N(' MA2100', 'MA2110', 'MA2112')
-- Make the same query as in the previ ous exanpl e,
-- only use UNION ALL so that no duplicate rows are elim nated
SELECT EMPNO
FROM EMPLOYEE
VWHERE WORKDEPT LI KE ' E%
UNI ON ALL
SELECT EMPNO
FROM EMP_ACT
VWHERE PRQINO | N(' MA2100', 'MA2110', 'MA2112')

tag

124

Derby Reference Manual

-- Make the same query as in the previous exanpl e,
-- only include an additional two enpl oyees currently not in any table
-- and tag these rows as "new'
SELECT EMPNO, 'enp'
FROM EMPLOYEE
WHERE WORKDEPT LI KE ' E%

UNI ON
SELECT EMPNO, 'enp_act'

FROM EMP_ACT

WHERE PRQINO | N(' MA2100', ' MA2110', 'MA2112')
UNI ON

VALUES (' NEWAAA' , 'new), (' NEWBBB', 'new)

scalarSubquery

A scalarSubquery, sometimes called an expression subquery, is a subquery that
evaluates to a single row with a single column.

You can place a scalarSubquery anywhere an expression is permitted. A scalarSubquery
turns a selectExpression result into a scalar value because it returns only a single row
and column value.

Syntax

(query
[ORDER BY cl ause]

[result offset clause]
[fetch first clause]

)

Examples

-- avg always returns a single value, so the subquery is
-- a scal ar Subquery
SELECT NAME, COWM
FROM STAFF
VWHERE EXI STS
(SELECT AVG(BONUS + 800)
FROM EMPLOYEE
VWHERE COWM < 5000
AND EMPLOYEE. LASTNAME = UPPER(STAFF. NAME)
-- Introduce a way of "generating" new data val ues,
-- using a query which selects froma VALUES cl ause (which is an
-- alternate formof a fullselect).
-- This query shows how a table can be derived called "X" having
-- 1 colum "R1" and 1 row of data.
SELECT R1
FROM (VALUES(' GROUP 1')) AS X(R1)

tableSubquery
A tableSubquery is a subquery that returns multiple rows.

Unlike a scalarSubquery, a tableSubquery is allowed only:
* As a tableExpression in a FROM clause
* With EXISTS, IN, or quantified comparisons

When used as a tableExpression in a FROM clause, or with EXISTS, it can return
multiple columns.

When used with IN or quantified comparisons, it must return a single column.

Syntax
(query

125

Derby Reference Manual

[ORDER BY cl ause]
[result offset clause]
[fetch first clause]

)
Example

-- a subquery used as a tabl eExpression in a FROM cl ause
SELECT Virtual FlightTable.flight_ID

FROM
(SELECT flight _ID, orig_airport, dest_airport
FROM Fl i ght s

WHERE (orig_airport = 'SFO OR dest_airport = 'SCL'))
AS Virtual Fl i ght Tabl e
-- a subquery (val ues expression) used as a tabl eExpression
-- in a FROM cl ause
SELECT mycol 1
FROM

(VALUES (1, 2), (3, 4))
AS nytable (mycol 1, mycol 2)
-- a subquery used with EXI STS
SELECT *
FROM Fl i ghts
WHERE EXI STS

(SELECT * FROM Fl i ghts WHERE dest _airport = 'SFO

AND orig_airport = 'CRU)
-- a subquery used with IN
SELECT flight_id, segnent_nunber
FROM Fl i ght s
WHERE flight_id IN

(SELECT flight_ID

FROM Fl i ghts WHERE orig_airport = 'SFO

OR dest _airport = "'SCL')
-- a subquery with ORDER BY and FETCH FI RST cl auses
SELECT flight_id, segment_nunber
FROM Fl i ght s
VWHERE flight_id IN

(SELECT flight_ID

FROM Fl i ghts WHERE orig_airport = 'SFO

OR dest _airport = 'SCL' ORDER BY flight_id FETCH FI RST 12 ROAS ONLY)
-- a subquery used with a quantified conparison
SELECT NAME, COW
FROM STAFF
VWHERE COWM >
(SELECT AVG(BONUS + 800)

FROM EMPLOYEE
VWHERE COWM < 5000)

Built-in functions

A built-in function is an expression in which an SQL keyword or special operator executes
some operation.

Built-in functions use keywords or special built-in operators. Built-ins are SQLIdentifiers
and are case-insensitive. Note that escaped functions like TIMESTAMPADD and
TIMESTAMPDIFF are only accessible using the JDBC escape function syntax, and can
be found in JDBC escape syntax.

Standard built-in functions
The standard built-in functions supported in Derby are as follows.

* ABS or ABSVAL function
* ACOS function
¢ ASIN function

126

Derby Reference Manual

* ATAN function

* ATANZ2 function

» BIGINT function

» CAST function

» CEIL or CEILING function
* CHAR function

« Concatenation operator

» COS function

* NULLIF function

+ CURRENT _DATE function
» CURRENT ISOLATION function
+ CURRENT_TIME function
+ CURRENT_TIMESTAMP function
+ CURRENT_USER function
» DATE function

* DAY function

» DEGREES function

* DOUBLE function

» EXP function

* FLOOR function

* HOUR function

« IDENTITY_VAL_LOCAL function
* INTEGER function

* LENGTH function

* LN or LOG function

* LOG10 function

» LOCATE function

» LCASE or LOWER function
* LTRIM function

* MINUTE function

* MOD function

* MONTH function

» PI function

* RADIANS function

* RTRIM function

* SECOND function

+ SESSION_USER function
» SIN function

* SMALLINT function

* SOQRT function

* SUBSTR function

* TAN function

* TIME function

* TIMESTAMP function

* TRIM function

» UCASE or UPPER function
* USER function

* VARCHAR function

* YEAR function

Aggregates (set functions)

This section describes aggregates (also described as set functions in ANSI SQL and as
column functions in some database literature).

127

Derby Reference Manual

Aggregates provide a means of evaluating an expression over a set of rows. Whereas
the other built-in functions operate on a single expression, aggregates operate on a set
of values and reduce them to a single scalar value. Built-in aggregates can count rows as
well as calculate the minimum, maximum, sum, count, average, variance, and standard
deviation of an expression over a set of values.

In addition to the built-in aggregates, Derby allows you to create custom aggregate
operators, called user-defined aggregates (UDAs). For information on creating and
removing UDAs, see CREATE DERBY AGGREGATE statement and DROP DERBY
AGGREGATE statement. See GRANT statement and REVOKE statement for information
on usage privileges for UDASs.

For information on writing the Java classes that implement UDASs, see "Programming
user-defined aggregates" in the Derby Developer's Guide.

The built-in aggregates can operate on expressions that evaluate to the data types
shown in the following table.

Table 9. Permitted data types for built-in aggregates

Function Name Permitted Data Types

AVG Numeric built-in data types

COUNT All types

MAX Data types that can be indexed

MIN Data types that can be indexed
STDDEV_POP Numeric built-in data types
STDDEV_SAMP Numeric built-in data types

SUM Numeric built-in data types

VAR _POP Numeric built-in data types

VAR_SAMP Numeric built-in data types

Aggregates are permitted only in the following:
« A selectltem in a selectExpression.
* A HAVING clause.
« An ORDER BY clause (using an alias name) if the aggregate appears in the
result of the relevant query block. That is, an alias for an aggregate is permitted
in an ORDER BY clause if and only if the aggregate appears in a selectltem in a
selectExpression.

All expressions in selectltems in the selectExpression must be either aggregates

or grouped columns (see GROUP BY clause). (The same is true if there is a

HAVING clause without a GROUP BY clause.) This is because the ResultSet of a
selectExpression must be either a scalar (single value) or a vector (multiple values),
but not a mixture of both. (Aggregates evaluate to a scalar value, and the reference to
a column can evaluate to a vector.) For example, the following query mixes scalar and
vector values and thus is not valid:

-- not valid
SELECT M N(flying_tine), flight_id
FROM Fl i ght s

Aggregates are not allowed on outer references (correlations). This means that if a
subquery contains an aggregate, that aggregate cannot evaluate an expression that

128

Derby Reference Manual

includes a reference to a column in the outer query block. For example, the following
query is not valid because SUM operates on a column from the outer query:

SELECT c1
FROM t 1
GROUP BY cl
HAVI NG c2 >
(SELECT t 2. x
FROM t 2
WHERE t2.y = SUMt1.c3))

A cursor declared on a ResultSet that includes an aggregate in the outer query block is
not updatable.

ABS or ABSVAL function

The ABS or ABSVAL function returns the absolute value of a numeric expression.

The return type is the type of the parameter. All built-in numeric types are supported
(DECIMAL, DOUBLE PRECISION, FLOAT, INTEGER, BIGINT, NUMERIC, REAL, and
SMALLINT).

Syntax
ABS (nuneri cExpression)

ABSVAL (nuneri cExpression)

Example

-- returns 3
VALUES ABS(- 3)

ACOS function

The ACOS function returns the arc cosine of a specified number.

The specified number is the cosine, in radians, of the angle that you want. The specified
number must be a DOUBLE PRECISION number.
« If the specified number is NULL, the result of this function is NULL.
« If the absolute value of the specified number is greater than 1, an exception is
returned that indicates that the value is out of range (SQL state 22003).

The returned value, in radians, is in the range of zero (0) to pi. The data type of the
returned value is a DOUBLE PRECISION number.

Syntax

ACCS (numnber)

ASIN function
The ASIN function returns the arc sine of a specified number.

The specified number is the sine, in radians, of the angle that you want. The specified
number must be a DOUBLE PRECISION number.
« If the specified number is NULL, the result of this function is NULL.
« If the specified number is zero (0), the result of this function is zero.
« If the absolute value of the specified number is greater than 1, an exception is
returned that indicates that the value is out of range (SQL state 22003).

129

Derby Reference Manual

The returned value, in radians, is in the range -pi/2 to pi/2. The data type of the returned
value is a DOUBLE PRECISION number.

Syntax

ASIN (nunber)

ATAN function
The ATAN function returns the arc tangent of a specified number.

The specified number is the tangent, in radians, of the angle that you want. The specified
number must be a DOUBLE PRECISION number.

« If the specified number is NULL, the result of this function is NULL.

« If the specified number is zero (0), the result of this function is zero.

The returned value, in radians, is in the range -pi/2 to pi/2. The data type of the returned
value is a DOUBLE PRECISION number.

Syntax

ATAN (nunber)

ATAN2Z2 function

The ATAN2 function returns the arctangent, in radians, of the quotient of the two
arguments.

Upon successful completion, the function returns the arc tangent of y/x in the range -pi
to pi radians, where y is the first argument and x is the second argument. The specified
numbers must be DOUBLE PRECISION numbers.

« If either argument is NULL, the result of the function is NULL.

« If the first argument is zero and the second argument is positive, the result of the
function is zero.

« If the first argument is zero and the second argument is negative, the result of the
function is the double value closest to pi.

« If the first argument is positive and the second argument is zero, the result is the
double value closest to pi/2.

« If the first argument is negative and the second argument is zero, the result is the
double value closest to -pi/2.

The data type of the returned value is a DOUBLE PRECISION number.
Syntax

ATAN2 (y, X)

AVG function

AVG is an aggregate function that evaluates the average of an expression over a set of
rows.

AVG is allowed only on expressions that evaluate to numeric data types.
See Aggregates (set functions) for more information about these functions.

Syntax

AVG ([DISTINCT | ALL] expression)

130

Derby Reference Manual

The DISTINCT qualifier eliminates duplicates. The ALL qualifier retains duplicates. ALL
is the default value if neither ALL nor DISTINCT is specified. For example, if a column
contains the values 1.0, 1.0, 1.0, 1.0, and 2.0, AVG(col) returns a smaller value than
AVG(DISTINCT col).

Only one DISTINCT aggregate expression per selectExpression is allowed. For example,
the following query is not valid:

SELECT AVG (DI STINCT flying time), SUM (DI STINCT nil es)
FROM Fl i ghts

The expression can contain multiple column references or expressions, but it cannot
contain another aggregate or subquery. It must evaluate to an SQL numeric data type.
You can therefore call methods that evaluate to SQL data types. If an expression
evaluates to NULL, the aggregate skips that value.

The resulting data type is the same as the expression on which it operates (it will never
overflow). The following query, for example, returns the INTEGER 1, which might not be
what you would expect:

SELECT AVG(cl)
FROM (VALUES (1), (1), (1), (1), (2)) AS nyTable (c1)

CAST the expression to another data type if you want more precision:

SELECT AVG(CAST (c1 AS DOUBLE PREC SI ON))
FROM (VALUES (1), (1), (1), (1), (2)) AS nyTable (cl)

BIGINT function

The BIGINT function returns a 64-bit integer representation of a number or character
string in the form of an integer constant.

Syntax

Bl G NT (charact er Expressi on | numeri cExpression)

characterExpression
An expression that returns a character string value of length not greater than
the maximum length of a character constant. Leading and trailing blanks are
eliminated and the resulting string must conform to the rules for forming an SQL
integer constant. The character string cannot be a long string. If the argument
is a characterExpression, the result is the same number that would occur if the
corresponding integer constant were assigned to a big integer column or variable.
numericExpression
An expression that returns a value of any built-in numeric data type. If the argument is
a numericExpression, the result is the same number that would occur if the argument
were assigned to a big integer column or variable. If the whole part of the argument is
not within the range of integers, an error occurs. The decimal part of the argument is
truncated if present.

The result of the function is a big integer. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Example
Using the EMPLOYEE table, select the EMPNO column in big integer form for further
processing in the application:

SELECT Bl G NT (EMPNO) FROM EMPLOYEE

131

Derby Reference Manual

CAST function

The CAST function converts a value from one data type to another and provides a data
type to a dynamic parameter (?) or a NULL value.

CAST expressions are permitted anywhere expressions are permitted.

Syntax

CAST ([expression | NULL | ?]
AS dat aType)

The data type to which you are casting an expression is the target type. The data type of
the expression from which you are casting is the source type.

CAST conversions among SQL data types

The following table shows valid explicit conversions between source types and target
types for SQL data types. This table shows which explicit conversions between data
types are valid. The first column on the table lists the source data types. The first row lists
the target data types. A "Y" indicates that a conversion from the source to the target is
valid. For example, the first cell in the second row lists the source data type SMALLINT.
The remaining cells on the second row indicate the whether or not you can convert
SMALLINT to the target data types that are listed in the first row of the table.

Table 10. Explicit conversions between source types and target types for SQL data
types

OZ0r

TP>TOO>L
D>TOAO>L

I>TO

®Z20r
o
O
O

- -
- -
- -

—Z-rrr>»>W0m
ITmMmOMmM-dZ—
4Z-0—-W
r>—0mo
— > mX
mrwWwCcCOOo
—4>0rm

<1 <I<I<lm>xITO
>-H4>0
>->0
>->0

<fwmoro

WOoOrw
m-— >0
m< — -
T >»Hu0m — -
—Z X

Types
BOOLEAN
SMALLINT
INTEGER
BIGINT

<|lz>mrOoO0w
<|lTm>rTO>L
<[>T

<|=<l=<
<|=<l=<
<<=
<<=
<<=
<l <<
<|=<l=<

132

Derby Reference Manual

X =41, 0 0 0 . . . 1 1 1

F—>ZWwunkFEFc=a |, \ , >0 \ \ ! ! ! ! >

—=-=>uWwif, 0 \ > 0> \ ! ! ! ! > >

O<<F+uW f f f > > f f f f ' > >

o2 O0m| .f.0.f0 0.1 1: > > > >

O-210m 0 0 f >0 > > > > > > f f f f

40zZ0 >SICxrx oI LOoOx m— NOCH < , , , , , , , > > > 1 1 1 1 1
>SxroOoOII<Cx LOox mn— O<<kE<| ., ' ' ' , , , > > > . . . \ \
OICX L O m— O ' f f f f f f > > > ' ' ' ' '
40zZ0 > < OII<C X f f ' > > > ' ' ' > ' ' ' '

> < OI<Cx , , , > > > , , \ > > > >

OI <X |> . . V> > > 1 1 1 > > > >

SO <<k I>[>1>1>

o O > f>1>1>

W< af>1>1>1> \ \ 1 1 1 1 1 1 1 1 1

o w —S<<d>>1>1>1>1> \ \ \ 1 1 1 1 1 1

om O—ZF|[>[>[1>1>1>1> 1 1 1 1 1 1 1 1 1

- Z wouwao f>[>fI>1>1>1> 1 1 1 1 1 1 1 1 1

n =< A =ZFE1>1>1>1>1>1> ' ' ' ' ' ' ' ' i

nmnOoOO0 W< 2 ' ' ' > > > ' ' ' > ' ' ' '

x S

14 HEIR m mmm m_n m_n <
SHHERHE B EE EEEE E E B B
B1EIRIZ|5|2|CS|55|SR8|S<RE ||z |3|E|E

133

Derby Reference Manual

OzZ0r

TD>TITOO>L
TD>TITO0P>L

I>TITO

©zZ0or
o
O
O

- —m
- -
- —m

Z>mMr OO0 w
—AZ-rr>»w0m
ITmMOMmM-Z—
—4Z-0—-W
r>»—-—0mo
—>mX
mrmCOOU
—>0rm
I>TITO
DP>ITOA>L
D>ITOO>L
>-4>0
>-4>0
>-4>0
WOroOn
WOrw

m-— >0
m< — A
TU>r—4uvm — -

Types

<= Xx

XML -

If a conversion is valid, CASTs are allowed. Size incompatibilities between the source
and target types might cause runtime errors.

Notes
In this discussion, the Derby SQL data types are categorized as follows:
* logical
« BOOLEAN
* numeric
e Exact numeric (SMALLINT, INTEGER, BIGINT, DECIMAL, NUMERIC)
« Approximate numeric (FLOAT, REAL, DOUBLE PRECISION)
* string
e Character string (CLOB, CHAR, VARCHAR, LONG VARCHAR)
« Bit string (BLOB, CHAR FOR BIT DATA, VARCHAR FOR BIT DATA, LONG
VARCHAR FOR BIT DATA)
 date/time
e DATE
« TIME
e TIMESTAMP

Conversions to and from logical types

A BOOLEAN value can be cast explicitly to any of the string types. The result is 'true’,
'false’, or null. Conversely, string types can be cast to BOOLEAN. However, an error
is raised if the string value is not 'true’, 'false’, 'unknown', or null. Casting 'unknown' to
boolean results in a null value.

Conversions from numeric types

A numeric type can be converted to any other numeric type. If the target type cannot
represent the non-fractional component without truncation, an exception is raised. If the

134

Derby Reference Manual

target numeric cannot represent the fractional component (scale) of the source numeric,
then the source is silently truncated to fit into the target. For example, casting 763.1234
as INTEGER vyields 763.

Conversions from and to bit strings

Bit strings can be converted to other bit strings, but not to character strings. Strings that
are converted to bit strings are padded with trailing zeros to fit the size of the target bit
string. The BLOB type is more limited and requires explicit casting. In most cases the
BLOB type cannot be cast to and from other types: you can cast a BLOB only to another
BLOB, but you can cast other bit string types to a BLOB.

Conversions of date/time values

A date/time value can always be converted to and from a TIMESTAMP. If a DATE is
converted to a TIMESTAMP, the TIME component of the resulting TIMESTAMP is always
00:00:00. If a TIME data value is converted to a TIMESTAMP, the DATE component is
set to the value of CURRENT_DATE at the time the CAST is executed. If a TIMESTAMP
is converted to a DATE, the TIME component is silently truncated. If a TIMESTAMP is
converted to a TIME, the DATE component is silently truncated.

Conversions of XML values

An XML value cannot be converted to any non-XML type using an explicit or implicit
CAST. Use the XMLSERIALIZE operator to convert an XML type to a character type.

Examples

SELECT CAST (miles AS | NT)

FROM Fl i ght s

-- convert tinestanps to text

I NSERT | NTO nyt abl e (text_col um)

VALUES (CAST (CURRENT_TI MESTAMP AS VARCHAR(100)))
-- you nmust cast NULL as a data type to use it
SELECT airline

FROM Airl i nes

UNI ON ALL

VALUES (CAST (NULL AS CHAR(2)))

-- cast a double as a deci nal

SELECT CAST (FLYI NG TI ME AS DECI MAL(5, 2))

FROM FLI GHTS

-- cast a SVMALLINT to a BIG NT

VALUES CAST (CAST (12 as SMALLINT) as BI G NT)

CEIL or CEILING function

The CEIL or CEILING function rounds the specified number up, and returns the smallest
number that is greater than or equal to the specified number.

The specified number must be a DOUBLE PRECISION number.
« If the specified number is NULL, the returned value is NULL.
« If the specified number is equal to a mathematical integer, the returned value is the
same as the specified number.
« If the specified number is zero (0), the returned value is zero.
« If the specified number is less than zero but greater than -1.0, the returned value is
zero.

The returned value is the smallest (closest to negative infinity) double floating-point value
that is greater than or equal to the specified number. The returned value is equal to a
mathematical integer. The data type of the returned value is a DOUBLE PRECISION
number.

Syntax

135

Derby Reference Manual
CEIL (nunber)

CEl LI NG (nunber)

CHAR function
The CHAR function returns a fixed-length character string representation.

The representations are:

* A character string, if the first argument is any type of character string.

» A datetime value, if the first argument is a date, time, or timestamp.

* A decimal number, if the first argument is a decimal number.

« A double-precision floating-point number, if the first argument is a DOUBLE or

REAL.

« An integer number, if the first argument is a SMALLINT, INTEGER, or BIGINT.
The first argument must be of a built-in data type. The result of the CHAR function is a
fixed-length character string. If the first argument can be null, the result can be null. If
the first argument is null, the result is the null value. The first argument cannot be an
XML value. To convert an XML value to a CHAR of a specified length, you must use the
SQL/XML serialization operator XMLSERIALIZE.

Character to character syntax

CHAR (characterExpression [, integer])

characterExpression
An expression that returns a value that is CHAR, VARCHAR, LONG VARCHAR, or
CLOB data type.

integer
The length attribute for the resulting fixed length character string. The value must be
between 0 and 254.

If the length of the characterExpression is less than the length attribute of the result,

the result is padded with blanks up to the length of the result. If the length of the
characterExpression is greater than the length attribute of the result, truncation is
performed. A warning is returned unless the truncated characters were all blanks and the
characterExpression was not a long string (LONG VARCHAR or CLOB).

Integer to character syntax
CHAR (i nt eger Expression)

integerExpression
An expression that returns a value that is an integer data type (either SMALLINT,
INTEGER, or BIGINT).

The result is the character string representation of the argument in the form of an SQL
integer constant. The result consists of n characters that are the significant digits that
represent the value of the argument with a preceding minus sign if the argument is
negative. The result is left justified.

« If the first argument is a SMALLINT: The length of the result is 6. If the number of
characters in the result is less than 6, then the result is padded on the right with
blanks to length 6.

« If the first argument is an INTEGER: The length of the result is 11. If the number of
characters in the result is less than 11, then the result is padded on the right with
blanks to length 11.

« If the first argument is a BIGINT: The length of the result is 20. If the number of
characters in the result is less than 20, then the result is padded on the right with
blanks to length 20.

136

Derby Reference Manual
Datetime to character syntax
CHAR (dateti neExpression)

datetimeExpression
An expression that is one of the following three data types:

» DATE: The result is the character representation of the date. The length of the
result is 10.

» TIME: The result is the character representation of the time. The length of the
result is 8.

» TIMESTAMP: The result is the character string representation of the timestamp.
The length of the result is 26.

Decimal to character

CHAR (deci nal Expressi on)

decimalExpression
An expression that returns a value that is a decimal data type.

Floating point to character syntax

CHAR (fl oati ngPoi nt Expression)

floatingPointExpression
An expression that returns a value that is a floating-point data type (DOUBLE or
REAL).

Example
Use the CHAR function to return the values for EDLEVEL (defined as smallint) as a fixed
length character string:

SELECT CHAR(EDLEVEL) FROM EMPLOYEE

An EDLEVEL of 18 would be returned as the CHAR(6) value '18 ' (18 followed by four
blanks).

COALESCE function

The COALESCE function takes two or more compatible arguments and returns the first
argument that is not null.

The result is null only if all the arguments are null.
If all the parameters of the function call are dynamic, an error occurs.

Note: A synonym for COALESCE is VALUE. VALUE is accepted by Derby but is not
recognized by the SQL standard.

Syntax
COALESCE (expression, expression [, expression]*)

The function must have at least two arguments.

Example

ij>-- create table with three different integer types

ij> create table tenp(smallintcol smallint, bigintcol bigint, intcol
i nteger);

0 rows inserted/ updated/del et ed

ij>insert into tenp values (1, null, null);
1 row i nserted/ updat ed/ del et ed
ij>insert into tenp values (null, 2, null);

137

Derby Reference Manual

1 row i nserted/ updat ed/ del et ed
ij>insert into tenp values (null, null, 3);
1 row i nserted/ updat ed/ del et ed

ij>select * fromtenp

SMALL&| BI G NTCOL | I NTCOL
1 | NULL | NULL
NULL |2 | NULL
NULL | NULL |3

3 rows sel ected

ij>-- the return data type of coal esce is bigint

ij> select coal esce (smallintcol, bigintcol) fromtenp;
1

1

2

NULL

3 rows sel ected

ij>-- the return data type of coal esce is bigint
ij> select coal esce (smallintcol, bigintcol, intcol) fromtenp;

[EEN

3 rows sel ected

ij>-- the return data type of coal esce is integer
ij> select coalesce (smallintcol, intcol) fromtenp;
1

1

NULL

3

3 rows sel ected

Concatenation operator

The concatenation operator, | | , concatenates its right operand to the end of its left
operand. It operates on character or bit expressions.

Because all built-in data types are implicitly converted to strings, this function can act on
all built-in data types.

Syntax
{

char act er Expressi on || character Expressi on |
bi t Expression || bitExpression

For character strings, if both the left and right operands are of type CHAR, the resulting
type is CHAR; otherwise, it is VARCHAR. The normal blank padding/trimming rules for
CHAR and VARCHAR apply to the result of this operator.

The length of the resulting string is the sum of the lengths of both operands.

For bit strings, if both the left and the right operands are of type CHAR FOR BIT DATA,
the resulting type is CHAR FOR BIT DATA; otherwise, it is VARCHAR FOR BIT DATA.

Examples

138

Derby Reference Manual

-- returns 'supercalifragilisticexbealidocious(sp?)’

VALUES 'supercalifragilistic' || 'exbealidocious' || '(sp?)’
-- returns NULL

VALUES CAST (null AS VARCHAR(7))|| 'AString'

-- returns '130asdf"

VALUES ' 130" || ' asdf’

COS function

The COS function returns the cosine of a specified number.

The specified number is the angle, in radians, that you want the cosine for. The specified
number must be a DOUBLE PRECISION number.
« If the specified number is NULL, the result of this function is NULL.

Syntax

COS (number)

COSH function

The COSH function returns the hyperbolic cosine of a specified number.

The specified number is the angle, in radians, that you want the hyperbolic cosine for.
The specified number must be a DOUBLE PRECISION number.

« If the specified number is NULL, the result of this function is NULL.

« If the specified number is zero (0), the result of this function is one (1.0).

Syntax

COSH (nunber)

COT function

The COT function returns the cotangent of a specified number.

The specified number is the angle, in radians, that you want the cotangent for. The
specified number must be a DOUBLE PRECISION number.
« If the specified number is NULL, the result of this function is NULL.

Syntax

COT (nunber)

COUNT function

COUNT is an aggregate function that counts the number of rows accessed in an
expression. COUNT is allowed on all types of expressions.

See Aggregates (set functions) for more information about these functions.

Syntax

COUNT ([DISTINCT | ALL] expression)

The DISTINCT qualifier eliminates duplicates. The ALL qualifier retains duplicates. ALL
is assumed if neither ALL nor DISTINCT is specified. For example, if a column contains
the values 1, 1, 1, 1, and 2, COUNT(col) returns a greater value than COUNT(DISTINCT
col).

Only one DISTINCT aggregate expression per selectExpression is allowed. For example,
the following query is not allowed:

139

Derby Reference Manual

-- query not allowed
SELECT COUNT (DI STINCT flying_ tinme), SUM (DI STINCT nil es)
FROM Fl i ght s

An expression can contain multiple column references or expressions, but it cannot
contain another aggregate or subquery. If an expression evaluates to NULL, the
aggregate is not processed for that value.

The resulting data type of COUNT is INTEGER.

Example

-- Count the number of countries in each region,
-- show only regions that have at |east 2
SELECT COUNT (country), region

FROM Countri es

GROUP BY region

HAVI NG COUNT (country) > 1

COUNT(*) function

COUNT(*) is an aggregate function that counts the number of rows accessed. No NULLs
or duplicates are eliminated. COUNT(*) does not operate on an expression.

See Aggregates (set functions) for more information about these functions.
Syntax

COUNT(*)

The resulting data type is INTEGER.

Example

-- Count the nunmber of rows in the Flights table
SELECT COUNT(*)
FROM Fl i ght s

CURRENT DATE function
CURRENT DATE is a synonym for CURRENT_DATE.
See CURRENT_DATE function for details.

CURRENT_DATE function

The CURRENT_DATE function returns the current date; the value returned does not
change if it is executed more than once in a single statement.

This means the value is fixed even if there is a long delay between fetching rows in a
cursor.

Syntax

CURRENT DATE

or, alternately

CURRENT DATE

Example

-- find available future flights:
SELECT * FROM Flightavailability where flight_date > CURRENT_DATE;

140

Derby Reference Manual

CURRENT ISOLATION function

The CURRENT ISOLATION function returns the current isolation level as a CHAR(2)
value of either "™ (blank), "UR", "CS", "RS", or "RR".

Syntax
CURRENT | SOLATI ON

Example

VALUES CURRENT | SOLATI ON

CURRENT_ROLE function

The CURRENT_ROLE function returns the authorization identifier of the current role. If
there is no current role, it returns NULL.

This function returns a string of up to 258 characters. This is twice the length of an
identifier (128*2) + 2, to allow for quoting.

Syntax
CURRENT_ROLE

Example

VALUES CURRENT_ROLE

CURRENT SCHEMA function

The CURRENT SCHEMA function returns the schema name used to qualify unqualified
database object references.

Note: CURRENT SCHEMA and CURRENT SQLID are synonyms.
These functions return a string of up to 128 characters.

Syntax

CURRENT SCHENA

or, alternately

CURRENT SQLI D

Example

-- Set the nane colunm default to the current schena:

CREATE TABLE nytable (id int, nane VARCHAR(128) DEFAULT CURRENT SQLI D)
-- Inserts default value of current schema value into the table:

I NSERT | NTO nyt abl e(id) VALUES (1)

-- Returns the rows with the same nane as the current schena:

SELECT nane FROM nyt abl e WHERE name = CURRENT SCHEMA

CURRENT TIME function

CURRENT TIME is a synonym for CURRENT_TIME.
See CURRENT_TIME function for details.

141

Derby Reference Manual

CURRENT _TIME function

The CURRENT_TIME function returns the current time; the value returned does not
change if it is executed more than once in a single statement.

This means the value is fixed even if there is a long delay between fetching rows in a
cursor.

Syntax

CURRENT_TI ME

or, alternately

CURRENT TI ME
Examples

VALUES CURRENT_TI ME
-- or, alternately:

VALUES CURRENT TI ME

CURRENT TIMESTAMP function

CURRENT TIMESTAMP is a synonym for CURRENT_TIMESTAMP.
See CURRENT_TIMESTAMP function for details.

CURRENT_TIMESTAMP function

The CURRENT_TIMESTAMP function returns the current timestamp; the value returned
does not change if it is executed more than once in a single statement.

This means the value is fixed even if there is a long delay between fetching rows in a
cursor.

Syntax

CURRENT_TI MESTAMP

or, alternately

CURRENT TI MESTAMP
Examples

VALUES CURRENT_TI MESTAMP
-- or, alternately:

VALUES CURRENT TI MESTAMP

CURRENT_USER function

When used outside stored routines, the CURRENT_USER, USER, and SESSION_USER
functions all return the authorization identifier of the user that created the SQL session.

See USER function and SESSION_USER function for details on those functions.

SESSION_USER also always returns this value when used within stored routines.

142

Derby Reference Manual

If used within a stored routine created with EXTERNAL SECURITY DEFINER, however,
CURRENT_USER and USER return the authorization identifier of the user that owns the
schema of the routine. This is usually the creating user, although the database owner
could be the creator as well.

For information about definer's and invoker's rights, see CREATE PROCEDURE
statement or CREATE FUNCTION statement.

These functions return a string of up to 128 characters.

Syntax

CURRENT _USER

Example

VALUES CURRENT_USER

DATE function
The DATE function returns a date from a value.

The argument must be a date, timestamp, a positive number less than or equal to
2,932,897, a valid string representation of a date or timestamp, or a string of length 7 that
is not a CLOB, LONG VARCHAR, or XML value. If the argument is a string of length 7, it
must represent a valid date in the form yyyynnn, where yyyy are digits denoting a year,
and nnn are digits between 001 and 366, denoting a day of that year. The result of the
function is a date. If the argument can be null, the result can be null; if the argument is
null, the result is the null value.

The other rules depend on the data type of the argument specified:
« If the argument is a date, timestamp, or valid string representation of a date or
timestamp: The result is the date part of the value.
« If the argument is a number: The result is the date that is n-1 days after January 1,
1970, where n is the integral part of the number.
« If the argument is a string with a length of 7: The result is the date represented by
the string.

Syntax
DATE (expression)

Examples

This example results in an internal representation of '1988-12-25".

VALUES DATE(' 1988-12-25")

This example results in an internal representation of '1972-02-28".

VALUES DATE(789)

DAY function
The DAY function returns the day part of a value.

The argument must be a date, timestamp, or a valid character string representation of

a date or timestamp that is not a CLOB, LONG VARCHAR, or XML value. The result of
the function is an integer between 1 and 31. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Syntax

143

Derby Reference Manual
DAY (expression)

Example

val ues day(' 2007-08-02");

The resulting value is 2.

DEGREES function

The DEGREES function converts a specified number from radians to degrees.

The specified number is an angle measured in radians, which is converted to an
approximately equivalent angle measured in degrees. The specified number must be a
DOUBLE PRECISION number.

Attention: The conversion from radians to degrees is not exact. You should not expect
DEGREES(ACOS(0.5)) to return exactly 60.0.

The data type of the returned value is a DOUBLE PRECISION number.
Syntax

DEGREES (nunber)

DOUBLE function

The DOUBLE function returns a floating-point number corresponding to a number or a
character string.

The returned value corresponds to a number if the argument is a numeric expression.

The returned value corresponds to a character string representation of a number if the
argument is a string expression.

Numeric to double

DOUBLE [PRECI SION] (nuneri cExpression)

numericExpression
The argument is an expression that returns a value of any built-in numeric data type.

The result of the function is a double-precision floating-point number. If the argument
can be null, the result can be null; if the argument is null, the result is the null value.
The result is the same number that would occur if the argument were assigned to a
double-precision floating-point column or variable.

Character string to double

DOUBLE (stringExpression)

stringExpression
The argument can be of type CHAR or VARCHAR in the form of a numeric constant.
Leading and trailing blanks in argument are ignored.

The result of the function is a double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value. The result is the same number that
would occur if the string was considered a constant and assigned to a double-precision
floating-point column or variable.

EXP function

The EXP function returns e raised to the power of the specified number.

144

Derby Reference Manual

The specified number is the exponent that you want to raise e to. The specified number
must be a DOUBLE PRECISION number.

The constant e is the base of the natural logarithms.
The data type of the returned value is a DOUBLE PRECISION number.
Syntax

EXP (nunber)

FLOOR function

The FLOOR function rounds the specified number down, and returns the largest number
that is less than or equal to the specified number.

The specified number must be a DOUBLE PRECISION number.

« If the specified number is NULL, the result of this function is NULL.

« If the specified number is equal to a mathematical integer, the result of this function
is the same as the specified number.

« If the specified number is zero (0), the result of this function is zero.

The returned value is the largest (closest to positive infinity) double floating point value
that is less than or equal to the specified number. The returned value is equal to a
mathematical integer. The data type of the returned value is a DOUBLE PRECISION
number.

Syntax

FLOOR (nunber)

HOUR function
The HOUR function returns the hour part of a value.

The argument must be a time, timestamp, or a valid character string representation of a
time or timestamp that is not a CLOB, LONG VARCHAR, or XML value. The result of the
function is an integer between 0 and 24. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Syntax
HOUR (expression)
Example

Select all the classes that start in the afternoon from a table called TABLEL.

SELECT * FROM TABLE1 WHERE HOUR(STARTI NG BETWEEN 12 AND 17

IDENTITY_VAL_LOCAL function

The IDENTITY_VAL_LOCAL function is a non-deterministic function that returns the most
recently assigned value of an identity column for a connection, where the assignment
occurred as a result of a single row INSERT statement using a VALUES clause or a
single row UPDATE statement.

Syntax

| DENTI TY_VAL_LOCAL ()

145

Derby Reference Manual

The IDENTITY_VAL_LOCAL function has no input parameters. The result is a DECIMAL
(31,0), regardless of the actual data type of the corresponding identity column.

The value returned by the IDENTITY_VAL_LOCAL function, for a connection, is the
value assigned to the identity column of the table identified in the most recent single row
INSERT or UPDATE statement. The INSERT statement must contain a VALUES clause
on a table containing an identity column. The function returns a null value when a single
row UPDATE statement or a single row INSERT statement with a VALUES clause has
not been issued for a table containing an identity column.

The result of the function is not affected by the following:
« A single row INSERT statement with a VALUES clause or single row UPDATE
statement for a table without an identity column
< A multiple row INSERT statement with a VALUES clause
< A multiple row UPDATE statement
* An INSERT statement with a fullselect

If a table with an identity column has an INSERT trigger defined that inserts into another
table with another identity column, or an UPDATE trigger defined that updates another
table with another identity column, then the IDENTITY_VAL_LOCAL function will return
the generated value for the statement table, and not for the table modified by the trigger.

Examples

ij>create table t1(cl int generated always as identity, c2 int);
0 rows inserted/ updated/del eted

ij>insert into t1(c2) values (8);

1 row i nserted/ updat ed/ del et ed

ij> values I DENTITY_VAL_LOCAL();

1 row sel ected
ij> select |DENTITY_VAL LOCAL()+1, |DENTITY VAL LOCAL()-1 fromt1;
| 2

1 row sel ected

ij>insert into t1(c2) values (IDENTITY_VAL_LOCAL());
1 row i nserted/ updat ed/ del et ed

ij>select * fromtl;

N~

2 rows sel ected
ij> val ues | DENTI TY_VAL_LOCAL();

1 row sel ected
ij>insert into t1(c2) values (8), (9);
2 rows inserted/ updated/ del et ed

ij>-- multi-values insert, return value of the function should not
change

val ues | DENTI TY_VAL_LOCAL();

1

2

1 row sel ected
ij>select * fro
C1 |

146

Derby Reference Manual
4 | 9
4 rows sel ected
ij>insert into t1l(c2) select cl fromt1;
4 rows inserted/ updated/del eted
-- insert with sub-select, return value should not change
ij> values | DENTI TY_VAL_LOCAL();

1 row sel ected
ij>select * fro
I

O~NOUITRhWNE
A WNEFE OO 0

8 rows sel ected

ij> update t1 set cl=default where c2=4;
1 row i nserted/ updat ed/ del et ed

ij> values I DENTITY_VAL_LOCAL();

1 row sel ected
ij>select * fromtl;

O~NOoOURhWNE
A WNPF OO 00

8 rows sel ected

ij> update t1 set cl=default where c2=8;
2 rows inserted/ updat ed/ del et ed

ij> values | DENTITY_VAL_LOCAL();

1 row sel ected
ij>select * fromtl;

c1 | C2
10 | 8
2 | 1
11 | 8
4 |9
5 |1
6 | 2
7 | 3
9 | 4

INTEGER function

The INTEGER function returns an integer representation of a number or character string
in the form of an integer constant.

Syntax

I NT[EGER] (nuneri cExpression | characterExpression)

147

Derby Reference Manual

numericExpression
An expression that returns a value of any built-in numeric data type. If the argument is
a numericExpression, the result is the same number that would occur if the argument
were assigned to a large integer column or variable. If the whole part of the argument
is not within the range of integers, an error occurs. The decimal part of the argument
is truncated if present.

characterExpression
An expression that returns a character string value of length not greater than
the maximum length of a character constant. Leading and trailing blanks are
eliminated and the resulting string must conform to the rules for forming an SQL
integer constant. The character string cannot be a long string. If the argument
is a characterExpression, the result is the same number that would occur if the
corresponding integer constant were assigned to a large integer column or variable.

The result of the function is a large integer. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Example

Using the EMPLOYEE table, select a list containing salary (SALARY) divided by
education level (EDLEVEL). Truncate any decimal in the calculation. The list should
also contain the values used in the calculation and employee number (EMPNO). The list
should be in descending order of the calculated value:

SELECT | NTEGER (SALARY / EDLEVEL), SALARY, EDLEVEL, EMPNO
FROM EMPLOYEE
ORDER BY 1 DESC

LCASE or LOWER function

The LCASE or LOWER function takes a character expression as a parameter and returns
a string in which all alphabetical characters have been converted to lowercase.

Syntax
LCASE (charact er Expression)

LOVNER (charact er Expressi on)

A characterExpression is a CHAR, VARCHAR, or LONG VARCHAR data type or any
built-in type that is implicitly converted to a string (except a bit expression).

If the parameter type is CHAR or LONG VARCHAR, the return type is CHAR or LONG
VARCHAR. Otherwise, the return type is VARCHAR.

The length and maximum length of the returned value are the same as the length and
maximum length of the parameter.

If the characterExpression evaluates to null, this function returns null.

Examples

-- returns 'asdl#w
VALUES LOWER(' aSD1#wW)

SELECT LOWER(flight id) FROM Flights
LENGTH function

The LENGTH function is applied to either a character string expression or a