
automx2
Email client configuration made easy

Version 2024.2, 2024-08-01

1. Copyright
automx2 is Copyright © 2019-2024 Ralph Seichter. automx2 is licensed under the GNU General
Public License V3 or later. The project is hosted on GitHub in the rseichter/automx2
[https://github.com/rseichter/automx2] repository.

2. Contact
Should you be interested in supporting the project as a sponsor, you can find a contact email
address in the sponsorship section.

3. Preface
This document explains how automx2 works, how automated mail client configuration works, and
what it takes to install and configure automx2. If you are already familiar with automated mailbox
configuration methods you may want skip the following sections and jump right ahead to Installing
automx2 and Configuring automx2.

4. How does automx2 operate?
automx2 is a web service. It is usually located behind a web server like NGINX and waits for
configuration requests. When a mail user agent (MUA), a.k.a. mail client, requests configuration it
contacts the web server. The web server then acts as a proxy and forwards all requests to automx2
and passes answers back to the MUA.

HTTPS Web Server
autodiscover.example.com
autoconfig.example.com

Port 4243
MUA automx2

5. How does auto config work?
Modern email clients (Mail User Agents) can look for configuration data when a user begins to
create a new account. They will either send the user’s mail address to a service and ask the service
to reply with configuration that suits the user’s profile, or they will query the DNS system for
advice.

Using a specialized mail account configuration service allows for individualized setups. It also
allows to enforce a specific policy, which for example configures the mail client to use a specific
authentication mechanism. Quering the DNS for mail service locations allows for generic
instructions, but it doesn’t give as much control over settings as a specialized service like automx2
will do.

1

https://github.com/rseichter/automx2

As of today, there are four methods that help configuring a mail account. Three of them –
Autoconfig, Autodiscover and Mobileconfig – have been developed by vendors to cover their
products' specific needs. The fourth is an RFC standard specifying the aformentioned more general
DNS SRV resource records method.

The vendor specific methods have in common that the mail client seeking configuration needs to
send a request, which includes at least the user’s mail address, to a configuration service. The
service will use the mail address to lookup configuration data and will return that data as response
to the client. Format – XML response or file – and complexity differ depending on the method.

automx2 implements everything necessary to configure email accounts. Functionality to configure
calendar or address book settings is not included. This may change in some future version, but the
focus of automx2 is email.

5.1. Autoconfig
Autoconfig is a proprietary method developed by the Mozilla foundation. It was designed to
configure a mail account within Thunderbird, and other email suites like Evolution and KMail have
adopted [https://wiki.mozilla.org/Thunderbird:Autoconfiguration:ConfigFileFormat] the mechanism.

When a user begins to create a new mail account she is asked to enter her realname and mail
address, e.g. alice@example.com. Thunderbird will then extract the domainpart (example.com) from
the mail address and build a list of URIs to search for a configuration web service in the following
order:

https://autoconfig.thunderbird.net/v1.1/example.com
https://autoconfig.example.com/mail/config-v1.1.xml?emailaddress=alice@example.com
https://example.com/.well-known/autoconfig/mail/config-v1.1.xml
http://autoconfig.thunderbird.net/v1.1/example.com
http://autoconfig.example.com/mail/config-v1.1.xml?emailaddress=alice@example.com
http://example.com/.well-known/autoconfig/mail/config-v1.1.xml

A configuration service such as automx2 listening on one of the listed URIs will receive the request,
process it and respond with a set of configuration instructions.

Thunderbird will use the instructions to automatically fill in the required fields in the account. The
only remaining task for the user is to confirm the settings. After that she can immediately start to
use her new mail account.

5.2. Autodiscover
Autodiscover is a proprietary method developed by Microsoft. The protocol version supported by
automx2 was designed to configure a mail account within Outlook 2016 ff. Service lookups use the
URLs shown below and, as a fallback option, DNS lookups. Please note that Microsft uses a different
autodiscover mechanism for Office 365, which is not yet supported by automx2 because
information about the technical details are not available free of charge.

2

https://wiki.mozilla.org/Thunderbird:Autoconfiguration:ConfigFileFormat
https://wiki.mozilla.org/Thunderbird:Autoconfiguration:ConfigFileFormat

https://example.com/autodiscover/autodiscover.xml
https://autodiscover.example.com/autodiscover/autodiscover.xml
http://autodiscover.example.com/autodiscover/autodiscover.xml

dns: autodiscover.example.com
dns: _autodiscover._tcp.example.com

All HTTP(S) queries send a POST request and submit XML which contains information about the
account that should be configured. The DNS queries search for a CNAME resource record first, which
is supposed to redirect the mail client to a resource outside the mailbox owners domain, e.g.
alice@example.com would be redirected to service.example-provider.com for configuration
instructions. If the first DNS query fails the client may be redirected to a configuration service using
a SRV RR like this:

_autodiscover._tcp.example.com. 0 443 service.example-provider.com.

The SRV RR used in the example above would send Alice’s client to service.example-provider.com
and tell it to send the query to the configuration service on port 443.

5.3. Mobileconfig
Requests and responses use proprietary content types with an underlying property list
[https://en.wikipedia.org/wiki/Property_list] format. automx2 will return unsigned data, which means that
the service must be accessed via HTTPS only. Otherwise, your users have no way of knowing if they
access the correct service and will be vulnerable to man-in-the-middle attacks.

5.4. DNS SRV resource records

_imap._tcp.example.com SRV 10 20 143 mail.example.com.
_imaps._tcp.example.com SRV 0 1 993 .
_pop3._tcp.example.com SRV 0 1 110 .
_pop3s._tcp.example.com SRV 0 1 995 .
_smtp._tcp.example.com. SRV 0 1 25 .
_submission._tcp.example.com. SRV 10 20 587 mail.example.com.

6. Installing automx2
automx2 requires Python version 3.7 or greater, ideally in the form of a virtual Python
environment, to run. Check the python3 version like this:

$ python3 --version
Python 3.12.3

3

https://en.wikipedia.org/wiki/Property_list



Don’t run as root

If you use a port number greater than 1024 (I suggest port 4243), the application
does not require superuser privileges when running. Doing so would pose a
security risk and is therefore strongly discouraged. I recommend creating a fresh
user account called automx2.

6.1. Package based installation
There are packages available for Arch Linux [https://aur.archlinux.org/packages/automx2], Gentoo Linux
[https://packages.gentoo.org/packages/net-mail/automx2] and NixOS [https://search.nixos.org/packages?

type=packages&query=automx]. Note that these packages may not alway be up-to-date, because Linux
distributions have their own release schedules. Please make sure to check the version numbers if
you decide to go this route.

6.2. Pip based installation
This is the method which should always provide you with the latest release. The path
/srv/www/automx2 will be used as an example throughout this documentation. The BASH shell
commands below should work with any modern Linux distribution.

Best practice: Create a fresh user account.
sudo useradd --home-dir /srv/www/automx2 --create-home automx2

Alternative: If the user account already exists.
sudo bash -c 'mkdir -p /srv/www/automx2 && chown automx2 /srv/www/automx2'

Next, make sure to either login as the user created above, or change to this user via the 'su'
command. This is important to ensure the correct file permissions. Now download the script that
will install your automx2 service. Installation requires BASH plus either curl or wget to download
additional data. The script will abort if neither of the latter two can be found.

cd /srv/www/automx2
wget https://raw.githubusercontent.com/rseichter/automx2/master/contrib/install.sh
Alternative: curl -O
https://raw.githubusercontent.com/rseichter/automx2/master/contrib/install.sh
bash install.sh

Executing the setup script will create a Python virtual environment called .venv in the current
directory. You may pass a custom directory path as an argument to install.sh, if necessary. To
ensure a clean slate, installation will abort if the destination path already exists.

Example of how to pass a custom directory
bash install.sh /path/to/your/venv

4

https://aur.archlinux.org/packages/automx2
https://packages.gentoo.org/packages/net-mail/automx2
https://search.nixos.org/packages?type=packages&query=automx

The script will automatically download the automx2 Python module and place it inside the newly
created virtual environment. It will also create a launch script .venv/bin/flask.sh, which can run
automx2 after you prepared the configuration.

6.3. Updating
If you use pre-built packages, please consult the documentation for your specific Linux distribution.
The following applies only to pip based installations:

Change to the directory where automx2 has been installed previously. Activate the virtual
environment as usual and use pip’s --upgrade option:

cd /srv/www/automx2
.venv/bin/pip install --upgrade automx2

7. Configuring automx2
automx2 uses a file to read runtime instructions from and a database to lookup mail account
configuration data.

7.1. Placeholders
To make configuration more convenient, automx2 supports Mozilla-style placeholders
[https://wiki.mozilla.org/Thunderbird:Autoconfiguration:ConfigFileFormat#Placeholders]. For example, the
string %EMAILADDRESS% in database records will be replaced with the email address specified during
the query. While based on a proprietary feature of Autoconfig, automx2 also applies placeholders to
Autodiscover and Mobileconfig responses.

7.2. Runtime configuration
The configuration file defines automx2 runtime behaviour, and it specifies the backend automx2
should read mailbox account configuration data from.



Running without runtime config

If you launch automx2 without a configuration file, it will use internal defaults.
These are suitable for testing only. Launched without a config it will use an in-
memory SQLite database and all data will be lost once the application terminates.

During startup automx2 searches for runtime configuration instructions in the following locations.
The first match will determine the configuration used.

env : AUTOMX2_CONF ①
file : ~/.automx2.conf
file : /etc/automx2/automx2.conf

5

https://wiki.mozilla.org/Thunderbird:Autoconfiguration:ConfigFileFormat#Placeholders

file : /etc/automx2.conf

① If present, the environment variable AUTOMX2_CONF must point to the absolute path of a
configuration file.

To specify parameters and options automx2 uses an INI file [https://docs.python.org/3.9/library/

configparser.html#supported-ini-file-structure] syntax. The example configuration [https://github.com/

rseichter/automx2/blob/master/contrib/automx2-sample.conf] that ships with automx2 looks like this:

[automx2]
A typical production setup would use loglevel WARNING.
loglevel = DEBUG
Echo SQL commands into log? Used for debugging.
db_echo = no
In-memory SQLite database
db_uri = sqlite:///:memory:

SQLite database in a UNIX-like file system
#db_uri = sqlite:////var/lib/automx2/db.sqlite

MySQL database on a remote server. This example does not use an encrypted
connection and is therefore *not* recommended for production use.
#db_uri = mysql://username:password@server.example.com/db

Number of proxy servers between automx2 and the client (default: 0).
If your logs only show 127.0.0.1 or ::1 as the source IP for incoming
connections, proxy_count probably needs to be changed.
proxy_count = 1

Place the content of the example configuration into one of the configuration locations automx2
looks for and adapt it to your needs. Then configure the database backend with data that suits your
setup, as described below.

7.3. Testing standalone automx2
If you want to verify a vanilla installation of automx2 works, you can populate it with internal test
data. Start automx2 as described in section Running automx2 and send the following request to
populate your database:

curl http://127.0.0.1:4243/initdb/

This example assumes you are running automx2 on localhost listening on TCP port 4243, which is
the suggested default port.

Once you have populated the database with sample data you can test if automx2 works. Use curl to
send an account configuration request for user@example.com:

6

https://docs.python.org/3.9/library/configparser.html#supported-ini-file-structure
https://github.com/rseichter/automx2/blob/master/contrib/automx2-sample.conf

curl 'http://127.0.0.1:4243/mail/config-
v1.1.xml?emailaddress=alice@example.com&name=Alice%20Jones'

As shown in the example, make sure to quote the URL as necessary. Otherwise, your command shell
might perform pattern matching for characters like the question mark ? (FISH does).

7.4. Password support
For years I have refused to support passwords in the generated configuration data, because of the
risks involved. By the very nature of the process, cleartext passwords are required. This means that
passwords can potentially be intercepted in transit, e.g. between a HTTPS proxy and automx2. Even
worse, if the receiving user foolishly decides to save a configuration file locally, that file will contain
the user’s password in plain text, visible for everybody with read access to the file. Also, depending
on how automx2 is configured, cleartext passwords can potentially be written to log files.

My reluctance to implement password support has resulted in some code forks where people added
the feature anyway. Recognising the desire for password support, I have decided on a compromise.
automx2 version 2024.2 introduces password support, but for the time being only for Apple’s
Mobileconfig. This is due to iOS devices downloading configuration profiles to a staging area by
default, not offering the user an easy method to save the data elsewhere.

Note that the password support feature is deliberately disabled by default. To opt in, you need to set
the environment variable PERMIT_CLEARTEXT_PASSWORDS=I_understand_the_risks. If you don’t know
what that means, I suggest you hold off on this feature until you have done some research.



Your responsibility

Caveat emptor: By opting in, and I recommend that you do not opt in, you
acknowledge that you take full responsibility for any and all harm that could
result from leaked passwords. Please ask yourself if a bit of added convenience for
users, i.e. having to enter passwords less frequently during a one-time device
setup, is worth the risks.

Once the feature is activated, you can send GET requests with additional parameters. Sending a
password with support disabled will result in an error log message, and the supplied password will
be ignored. URL encoding is very important here. I suggest that you create a HTML landing page for
your users, with explanation about the risks inolved. Include a <form> to submit the necessary fields
to automx2.

curl
'http://127.0.0.1:4243/mobileconfig?emailaddress=jd@example.com&name=John%20Doe&passwo
rd=ThisIsInsecure'

7.5. Database configuration
automx2 uses the SQLAlchemy toolkit to access databases. This allows a variety of databases, a.k.a.

7

dialects [https://docs.sqlalchemy.org/en/latest/dialects/], to be used, simply by defining the appropriate
connection URL.



API based configuration

I consider adding an API for configuration changes in an upcoming version but
have not decided when that might happen. Feel free to contact me if you are
interested in a sponsorship.

7.5.1. Database support

While you probably already have SQLite support available on your local machine, you may need to
install additional Python packages for PostgreSQL, MySQL, etc. Detailed instructions to support a
particular database dialect are out of scope for this document. Please search the Internet for
detailed instructions on supporting a particular dialect. The SQLAlchemy documentation provides a
useful starting point.

While the contrib directory contains example database schemas which you can use as a reference, I
recommend using the built-in method to create the necessary DB structure from scratch by sending
an HTTP GET request to the /initdb/ service endpoint. This will also populate the database with
some hard-coded example data. Alternatively, you can send a POST request with custom JSON data
to the same endpoint, as described below.


Purging the database

Sending an HTTP DELETE request to /initdb/ will purge all existing data. Be sure
to limit access accordingly!

If you upgrade from an early automx2 release and wish to migrate your existing database, you can
use the built-in Alembic support. However, this requires cloning the Git repository, modifying
alembic.ini and invoking the migration from the command line. It is usually easier to export your
existing data, create a fresh DB and import the data.

7.5.2. SQLite

This section demonstrates what you need to do to in order to use SQLite version 3 or higher as a
backend database for automx2.

Step 1: Set the database URI in your automx2 configuration. Please note that specifying an absolute
path for the database requires a total of four slashes after the schema identifier:

[automx2]
db_uri = sqlite:////var/lib/automx2/db.sqlite

Step 2: Launch automx2 and access the DB initialisation URL.

Method 1: Populate DB with example data
curl -X GET http://127.0.0.1:4243/initdb/
Method 2: Populate DB based on the content of a JSON file

8

https://docs.sqlalchemy.org/en/latest/dialects/

curl -X POST --json @mydata.json http://127.0.0.1:4243/initdb/

Starting with automx2 version 2022.0, JSON data can be used to populate the database in a
simplified manner, without the need to use SQL statements. The required data format is as follows:

{
 "provider": "Example Inc.",
 "domains": ["example.com", "example.net", "example.org"],
 "servers": [
 {"type": "imap", "name": "imap.example.com"},
 {"type": "smtp", "name": "smtp.example.com"},
 {"type": "caldav", "port": 443,
 "url": "https://www.example.net/SOGo/dav/%EMAILADDRESS%/Calendar/personal/"},
 {"type": "carddav", "port": 443,
 "url": "https://www.example.net/SOGo/dav/%EMAILADDRESS%/Contacts/personal/"}
]
}

Using JSON is recommended when you are content with automx2 choosing some details like port
numbers or socket types for you.

If you prefer SQL statements for greater control of the database content, the Git repository contains
a sqlite-generate.sh helper script which demonstrates how the database can be populated
programmatically. Note that this is merely an example script, limited in scope, and not meant to
configure a production-ready service. Also, you need to adapt a few settings according to your
needs:

PROVIDER_NAME='Example Inc.'
PROVIDER_SHORTNAME='Example'
PROVIDER_ID=100

DOM='example'
TLD='com'

The script will print the SQL statements to standard output, which can be piped into sqlite3 for
processing. Make sure to match the automx2.conf db_uri setting when specifying the database.

contrib/sqlite-generate.sh | sqlite3 /var/lib/automx2/db.sqlite

Once you have populated the database automx2 is ready to run.

7.5.3. MySQL

Step 1: Create a database.

9

../contrib/sqlite-generate.sh

CREATE DATABASE `automx2` COLLATE 'utf8mb4_general_ci';

Step 2: Set the database URI in your automx2 configuration. The following example uses pymysql as
a DB driver, which is not included in the automx2 distribution.

[automx2]
db_uri = mysql+pymysql://user:pass@dbhost/automx2?charset=utf8mb4

Step 3: Launch automx2 and access the DB initialisation URL:

curl http://127.0.0.1:4243/initdb/

7.5.4. PostgreSQL

Step 1: Create a database.

CREATE DATABASE automx2 LOCALE 'en_US.utf8';

Step 2: Set the database URI in your automx2 configuration. The following example uses psycopg2
as a DB driver, which is not included in the automx2 distribution.

[automx2]
db_uri = postgresql+psycopg2://user:pass@dbhost/automx2

Step 3: Launch automx2 and access the DB initialisation URL:

curl http://127.0.0.1:4243/initdb/

7.6. Alembic
As mentioned in a previous section, you can use Alembic [https://alembic.sqlalchemy.org/] to create or
upgrade your database. You need to start your first run using an empty database for this to work,
because Alembic stores versioning information in said database. Database upgrades are based on
this information. Follow the steps shown below, setting the RELEASE variable to the GitHub tag or
release number of your choice.

export RELEASE="2021.6"
wget https://github.com/rseichter/automx2/archive/refs/tags/$RELEASE.zip
unzip $RELEASE.zip
cd automx2-$RELEASE/alembic

10

https://alembic.sqlalchemy.org/

Next, change the value for sqlalchemy.url in alembic.ini to match your automx2 configuration.
Create an empty database unless you are using SQLite, in which case Alembic will create the
database for you. The final steps are activating the automx2 virtual Python environment and
invoke make.

source /path/to/automx2/.venv/bin/activate
make upgrade

You should see output similar to the following:

PYTHONPATH=.. FLASK_APP=automx2.server:app flask db upgrade -d .
Running automx2 version 2021.6
INFO [alembic.runtime.migration] Context impl SQLiteImpl.
INFO [alembic.runtime.migration] Will assume non-transactional DDL.
INFO [alembic.runtime.migration] Running upgrade -> f62e64b43d2f, DB schema for
automx2 version 2020.0
Created: 2020-01-17 22:30:05.748651
INFO [alembic.runtime.migration] Running upgrade f62e64b43d2f -> 5334f8a8282c, Add
"prio" column to "server" table.
Created: 2020-12-15 15:04:49.371802
INFO [alembic.runtime.migration] Running upgrade 5334f8a8282c -> 43ebb40d0578, DAV
server support

8. LDAP support
automx2 supports looking up user account data using LDAP. This is typically used to find users'
login IDs for IMAP/SMTP authentication given an associated email address. Note that this is an
optional configuration element commonly used by larger organisations. For smaller user bases,
using placeholders may be sufficient.

The following partial LDIF snippet shows how a mail account can be defined in a widely used LDAP
schema:

dn: uid=jdoe,ou=mailusers,dc=example,dc=com
objectClass: inetOrgPerson
objectClass: organizationalPerson
objectClass: person
objectClass: posixAccount
objectClass: top
cn: John Doe
givenName: John
homeDirectory: /var/maildata/jdoe
mail: johndoe@example.com
sn: Doe
uid: jdoe
uidNumber: 4321

11

[... more attributes here ...]

In order to allow automx2 to connect, an entry similar to the following needs to be created in the
database:

INSERT INTO ldapserver (
 id, name, port, use_ssl,
 search_base, search_filter, attr_uid, attr_cn,
 bind_password, bind_user
) VALUES (
 100, 'ldap.example.com', 636, 1,
 'ou=mailusers,dc=example,dc=com', '(mail={0})', 'uid', 'cn',
 'PASSWORD', 'cn=automx2,ou=services,dc=example,dc=com'
);

An encrypted connection (LDAPS) is used and the filter and attribute names are set according to the
LDIF above. It is assumed that cn=automx2,ou=services,dc=example,dc=com with the given password
is permitted read-only access to the necessary LDAP records/attributes. The search filter needs to
contain the placeholder {0} which will be replaced with the email address used as the lookup key.

Values of the LDAP attributes specified using attr_uid and attr_cn will be returned as the resulting
login ID and common name, respectively. If your users are required to log in using their email
address instead of a technical user ID, and based on the example LDIF above, set attr_uid to mail
instead of uid:

UPDATE ldapserver SET attr_uid='mail' WHERE id=100;

Now all that is left is to connect the example.com domain to LDAP server ID 100:

UPDATE domain SET ldapserver_id=100 WHERE name='example.com';

9. Running automx2
Running automx2 requires to start automx2 as service and serve its output via a web server to the
public. You should not run automx2 with superuser privileges. Use a dedicated user instead.

The following examples assume you have created a user and group automx2 and have granted
appropriate rights to this user:

• Read permissions for the automx2.conf configuration file.

• Read and access permissions for the virtual Python environment.

• Read and access permissions for the SQLite database.

12

9.1. As a OpenRC service
The following is an example for a OpenRC run script /etc/init.d/automx2 which I use for Gentoo
Linux:

#!/sbin/openrc-run
#
/etc/init.d/automx2

: ${AUTOMX2_CONF:="/etc/${RC_SVCNAME}.conf"}
: ${AUTOMX2_USER:="automx2"}
: ${AUTOMX2_ARGS:="--port 4243"}

command="/usr/bin/python"
command_args="/usr/bin/flask run ${AUTOMX2_ARGS}"
command_background="true"
command_user="${AUTOMX2_USER}"
pidfile="/run/${RC_SVCNAME}.pid"
required_files="${AUTOMX2_CONF}"

depend() {
 use logger net
 before nginx
}

start_pre() {
 export AUTOMX2_CONF
 export EPYTHON="python3.9"
 export FLASK_APP="automx2.server:app"
 export FLASK_ENV="production"
}

If you wish to override any of the settings, copy the following to /etc/conf.d/automx2 and
uncomment/change variables according to your needs. This is purely optional.

/etc/conf.d/automx2

Additional parameters passed to Flask
#AUTOMX2_ARGS="--host 127.0.0.1 --port 4243"

Configuration file
#AUTOMX2_CONF="/etc/automx2.conf"

Process owner (choose a non-privileged user)
#AUTOMX2_USER="automx2"

13

9.2. As a systemd service
If your system uses systemd you may want to deploy the following automx2.service unit file from
the contrib section and place it in /etc/systemd/system/automx2.service:

[Unit]
After=network.target
Description=MUA configuration service
Documentation=https://rseichter.github.io/automx2/

[Service]
Environment=FLASK_APP=automx2.server:app
Environment=FLASK_CONFIG=production
ExecStart=/srv/www/automx2/bin/flask run --host=127.0.0.1 --port=4243
Restart=always
User=automx2
WorkingDirectory=/var/lib/automx2

[Install]
WantedBy=multi-user.target

Once you have installed the service you need to tell systemd to reload its list of available services:

sudo systemctl daemon-reload

It should now be able to tell you about a service named automx2:

sudo systemctl status automx2
● automx2.service - MUA configuration service
 Loaded: loaded (/etc/systemd/system/automx2.service; disabled; vendor preset:
enabled)
 Active: inactive (dead)

Next enable and start automx2 using the following command:

sudo systemctl enable automx2 --now
Created symlink /etc/systemd/system/multi-user.target.wants/automx2.service →
/etc/systemd/system/automx2.service.

You should see automx2 enabled and running:

sudo systemctl status automx2
● automx2.service - MUA configuration service
 Loaded: loaded (/etc/systemd/system/automx2.service; enabled; vendor preset:
enabled)

14

../contrib/automx2.service

 Active: active (running) since Mon 2021-03-01 12:54:31 CET; 19s ago
 Main PID: 126966 (python)
 Tasks: 1 (limit: 4620)
 Memory: 46.1M
 CGroup: /system.slice/automx2.service
 └─126966 /srv/www/automx2/bin/flask run --host=127.0.0.1 --port=4243
[...]
Mar 01 12:54:32 mail python[126966]: Reading /etc/automx2.conf
Mar 01 12:54:32 mail python[126966]: Config.get: loglevel = WARNING
Mar 01 12:54:32 mail python[126966]: * Running on http://127.0.0.1:4243/ (Press
CTRL+C to quit)

You are now ready to start testing automx2, as described below.

9.3. Manually from a shell
While logged in as an unprivileged user, change into the installation directory and start the
.venv/bin/flask.sh launch script:

cd /srv/www/automx2
.venv/bin/flask.sh run --host=127.0.0.1 --port=4243



Handling terminal output

The launch script will deliberately keep automx2 running in the foreground, and
log data will be displayed in the terminal. If you press Ctrl-C or close the shell
session, the application will terminate. To run automx2 in the background, you can
use a window manager like GNU Screen [https://www.gnu.org/software/screen/] or tmux
[https://en.wikipedia.org/wiki/Tmux].

Now that automx2 is up and running, you need to configure the web server proxy that will receive
requests from the outside and forwards them to automx2.

10. Testing automx2 locally
You can use curl in a command shell to send a GET request to your local automx2-instance. The
following example assumes your service runs on localhost on port 4243. The exact output depends
on your database content, but should look similar.

curl 'http://127.0.0.1:4243/mail/config-v1.1.xml?emailaddress=user@example.com'

<clientConfig version="1.1">
 <emailProvider id="automx2-100">
 <identity/>
 <domain>example.com</domain>

15

https://www.gnu.org/software/screen/
https://en.wikipedia.org/wiki/Tmux

 <displayName>Example Inc.</displayName>
 <displayShortName>Example</displayShortName>
 <incomingServer type="imap">
 <hostname>mail.example.com</hostname>
 <port>993</port>
 <socketType>SSL</socketType>
 <username>%EMAILADDRESS%</username>
 <authentication>plain</authentication>
 </incomingServer>
 <incomingServer type="pop3">
 <hostname>mail.example.com</hostname>
 <port>110</port>
 <socketType>STARTTLS</socketType>
 <username>%EMAILADDRESS%</username>
 <authentication>plain</authentication>
 </incomingServer>
 <outgoingServer type="smtp">
 <hostname>mail.example.com</hostname>
 <port>587</port>
 <socketType>STARTTLS</socketType>
 <username>%EMAILADDRESS%</username>
 <authentication>plain</authentication>
 </outgoingServer>
 <!-- ... -->
 </emailProvider>
</clientConfig>

Having verified that automx2 returns configuration data, you should make the service available
using a web server as a proxy.

11. Configuring a web server
While it is technically possible to run automx2 without a web server in front of it, I do not
recommend doing that in a production environment. A web server can provide features automx2
was designed not to have. Features such as transport layer encryption for HTTPS (required for
Mobileconfig) or, for example, the capability to rate-limit clients are handled very well by full-
fledged web servers working as reverse proxies. It would be a waste to re-implement all this in a
web service.

This section will explain how to configure a web server as a reverse proxy in front of automx2.
Before you set up the proxy you need to tell automx2 it operates behind one. Add the proxy_count
parameter to your automx2 configuration file or uncomment the parameter if it is already there:

[automx2]
A typical production setup would use loglevel = WARNING
loglevel = WARNING

Disable SQL command echo. ①

16

db_echo = no

SQLite database in a UNIX-like file system
db_uri = sqlite:////var/lib/automx2/db.sqlite

Number of proxy servers between automx2 and the client (default: 0).
If your logs only show 127.0.0.1 or ::1 as the source IP for incoming
connections, proxy_count probably needs to be changed. ②
proxy_count = 1

① Echoing SQL commands is only meant for debugging purposes.

② Set the number to reflect the number of proxies chained in front of automx2, i.e. the number of
"proxy hops" a client’s request must pass before it reaches automx2.

11.1. NGINX
The following example defines an HTTP server, which will listen for requests to both
autoconfig.example.com and autodiscover.example.com. All requests will be forwarded to automx2,
which listens on TCP port 4243 in this example. Requests to /initdb are restricted to clients
connecting from the local host. The proxy_set_header directives will cause NGINX to pass relevant
data about incoming requests' origins.

NGINX example configuration snippet to forward incoming requests to automx2.
vim: ts=4 sw=4 et ft=nginx

http {
 server {
 listen *:80;
 listen [::]:80;
 server_name autoconfig.example.com autodiscover.example.com;
 location /initdb {
 # Limit access to clients connecting from localhost
 allow 127.0.0.1;
 deny all;
 }
 location / {
 # Forward all traffic to local automx2 service
 proxy_pass http://127.0.0.1:4243/;
 proxy_set_header Host $host;
 # Set config parameter proxy_count=1 to have automx2 process these headers
 proxy_set_header X-Forwarded-Proto http;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Real-IP $remote_addr;
 }
 }
}

17

11.2. Apache
The following example shows an Apache configuration similar to the one above. ProxyPreserveHost
directives will cause apache to pass relevant data about incoming requests' origins.

Apache 2.4 example configuration snippet to forward incoming requests to automx2.
vim: ts=4 sw=4 et ft=apache

<VirtualHost *:80>
 ServerName autoconfig.example.com
 ServerAlias autodiscover.example.com
 ProxyPreserveHost On
 ProxyPass "/" "http://127.0.0.1:4243/"
 ProxyPassReverse "/" "http://127.0.0.1:4243/"
 <Location /initdb>
 # Limit access to clients connecting from localhost
 Order Deny,Allow
 Deny from all
 Allow from 127.0.0.1
 </Location>
</VirtualHost>

12. Sponsorship
If you are interested in sponsoring a specific feature, please contact me using the email address
<automx2 AT seichter DOT de>.

18

	automx2: Email client configuration made easy
	1. Copyright
	2. Contact
	3. Preface
	4. How does automx2 operate?
	5. How does auto config work?
	5.1. Autoconfig
	5.2. Autodiscover
	5.3. Mobileconfig
	5.4. DNS SRV resource records

	6. Installing automx2
	6.1. Package based installation
	6.2. Pip based installation
	6.3. Updating

	7. Configuring automx2
	7.1. Placeholders
	7.2. Runtime configuration
	7.3. Testing standalone automx2
	7.4. Password support
	7.5. Database configuration
	7.5.1. Database support
	7.5.2. SQLite
	7.5.3. MySQL
	7.5.4. PostgreSQL

	7.6. Alembic

	8. LDAP support
	9. Running automx2
	9.1. As a OpenRC service
	9.2. As a systemd service
	9.3. Manually from a shell

	10. Testing automx2 locally
	11. Configuring a web server
	11.1. NGINX
	11.2. Apache

	12. Sponsorship

